Spherical Deformable U-Net: Application to Cortical Surface Parcellation and Development Prediction

Convolutional Neural Networks (CNNs) have achieved overwhelming success in learning-related problems for 2D/3D images in the Euclidean space. However, unlike in the Euclidean space, the shapes of many structures in medical imaging have an inherent spherical topology in a manifold space, e.g., the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2021-04, Vol.40 (4), p.1217-1228
Hauptverfasser: Zhao, Fenqiang, Wu, Zhengwang, Wang, Li, Lin, Weili, Gilmore, John H., Xia, Shunren, Shen, Dinggang, Li, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Convolutional Neural Networks (CNNs) have achieved overwhelming success in learning-related problems for 2D/3D images in the Euclidean space. However, unlike in the Euclidean space, the shapes of many structures in medical imaging have an inherent spherical topology in a manifold space, e.g., the convoluted brain cortical surfaces represented by triangular meshes. There is no consistent neighborhood definition and thus no straightforward convolution/pooling operations for such cortical surface data. In this paper, leveraging the regular and hierarchical geometric structure of the resampled spherical cortical surfaces, we create the 1-ring filter on spherical cortical triangular meshes and accordingly develop convolution/pooling operations for constructing Spherical U-Net for cortical surface data. However, the regular nature of the 1-ring filter makes it inherently limited to model fixed geometric transformations. To further enhance the transformation modeling capability of Spherical U-Net, we introduce the deformable convolution and deformable pooling to cortical surface data and accordingly propose the Spherical Deformable U-Net (SDU-Net). Specifically, spherical offsets are learned to freely deform the 1-ring filter on the sphere to adaptively localize cortical structures with different sizes and shapes. We then apply the SDU-Net to two challenging and scientifically important tasks in neuroimaging: cortical surface parcellation and cortical attribute map prediction. Both applications validate the competitive performance of our approach in accuracy and computational efficiency in comparison with state-of-the-art methods.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2021.3050072