Effect of alcoholic and acetous fermentations on the phenolic acids of Kei‐apple (Dovyalis caffra L.) fruit
BACKGROUND The Kei apple is a tree found on the African continent. Limited information exists on the effect of alcoholic and acetous fermentation on the phytochemicals of Kei apple. The fruit has increased concentrations of l‐malic, ascorbic, and phenolic acids among other compounds. Juice was co‐in...
Gespeichert in:
Veröffentlicht in: | Journal of the science of food and agriculture 2021-08, Vol.101 (10), p.4315-4320 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUND
The Kei apple is a tree found on the African continent. Limited information exists on the effect of alcoholic and acetous fermentation on the phytochemicals of Kei apple. The fruit has increased concentrations of l‐malic, ascorbic, and phenolic acids among other compounds. Juice was co‐inoculated with Schizosaccharomyces pombe (Sp) and Saccharomyces cerevisiae (Sc) to induce alcoholic fermentation (AF). Acetous fermentation followed AF, using an acetic acid bacteria (AAB) consortium.
RESULTS
Saccharomyces cerevisiae + Sp wines and vinegars had the highest pH. Total acidity, soluble solids and l‐malic acid decreased during AF and acetous fermentation, and was highest in Sc wines and vinegars. Volatile acidity (VA) concentration was highest in Sp vinegars but was not significantly different from Sc and Sc + Sp vinegars.
Gallic acid was highest in Sp wines and vinegars, whereas syringic acid was highest in Sc wines and vinegars. The Sc + Sp wines were highest in caffeic, p‐coumaric, and protocatechuic acids. Schizosaccharomyces pombe vinegars were highest in caffeic and p‐coumaric acids. Highest concentrations of ferulic and sinapic acids were found in Sp and Sc wines, respectively. Chlorogenic acid was most abundant phenolic acid in both wines and vinegars.
CONCLUSION
Saccharomyces cerevisiae + Sp and Sc fermentation had a positive effect on most phenolic acids; Sc + AAB had an increased effect on syringic and chlorogenic acids, whereas Sp + AAB resulted in an increase in gallic, caffeic, and p‐coumaric acids. The AAB selected had minimal performance with respect to VA production in comparison to commercial vinegars. Acetic acid bacteria selection for acetous fermentation should therefore be reconsidered and the decrease of certain phenolic acids during acetous fermentation needs to be investigated. © 2021 Society of Chemical Industry |
---|---|
ISSN: | 0022-5142 1097-0010 |
DOI: | 10.1002/jsfa.11071 |