Deep learning model for prediction of extended-spectrum beta-lactamase (ESBL) production in community-onset Enterobacteriaceae bacteraemia from a high ESBL prevalence multi-centre cohort
Adequate empirical antimicrobial coverage is instrumental in clinical management of community-onset Enterobacteriaceae bacteraemia in areas with high ESBL prevalence, while balancing the risk of carbapenem overuse and emergence of carbapenem-resistant organisms. It is unknown whether machine learnin...
Gespeichert in:
Veröffentlicht in: | European journal of clinical microbiology & infectious diseases 2021-05, Vol.40 (5), p.1049-1061 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1061 |
---|---|
container_issue | 5 |
container_start_page | 1049 |
container_title | European journal of clinical microbiology & infectious diseases |
container_volume | 40 |
creator | Lee, Alfred Lok Hang To, Curtis Chun Kit Lee, Angus Lang Sun Chan, Ronald Cheong Kin Wong, Janus Siu Him Wong, Chun Wai Chow, Viola Chi Ying Lai, Raymond Wai Man |
description | Adequate empirical antimicrobial coverage is instrumental in clinical management of community-onset Enterobacteriaceae bacteraemia in areas with high ESBL prevalence, while balancing the risk of carbapenem overuse and emergence of carbapenem-resistant organisms. It is unknown whether machine learning offers additional advantages to conventional statistical methods in prediction of ESBL production. To develop a validated model to predict ESBL production in Enterobacteriaceae causing community-onset bacteraemia. 5625 patients with community-onset bacteraemia caused by
Escherichia coli
,
Klebsiella
species and
Proteus mirabilis
during 1 January 2015–31 December 2019 from three regional hospitals in Hong Kong were included in the analysis, after exclusion of blood cultures obtained beyond 48 h of admission. The prevalence of ESBL-producing Enterobacteriaceae was 23.7% (1335/5625). Deep neural network and other machine learning algorithms were compared against conventional statistical model via multivariable logistic regression. Primary outcomes compared consisted of predictive model area under curve of receiver-operator characteristic curve (AUC), and macro-averaged F1 score. Secondary outcomes included sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Deep neural network yielded an AUC of 0.761 (95% CI 0.725–0.797) and F1 score of 0.661 (95% CI 0.633–0.689), which was superior to logistic regression (AUC 0.667 (95% CI 0.627–0.707), F1 score 0.596 (95% CI 0.567–0.625)). Deep neural network had a specificity of 91.5%, sensitivity of 37.5%, NPV of 82.5%, and PPV of 57.9%. Deep neural network is superior to logistic regression in predicting ESBL production in Enterobacteriaceae causing community-onset bacteraemia in high-ESBL prevalence area. Machine learning offers clinical utility in guiding judicious empirical antibiotics use. |
doi_str_mv | 10.1007/s10096-020-04120-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475394769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475394769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-df18d35ded4e827897b0d6f3705d9292f90930e53b0e8055bd5de4f7d0ae4b7d3</originalsourceid><addsrcrecordid>eNp9kc2OFCEUhYnROO3oC7gwJG7GBUpB0RRLZ2x_kklcqGtCwa1uJgW0QBnn1Xw6aWvUxIWbSwjfORw4CD3t6MuOUvmqtKm2hDJKaN-1ye6hTddzQXou-X20oYr3REnGz9CjUm5oEw1SPkRnnHOllFQb9OMNwBHPYHL0cY9DcjDjKWV8zOC8rT5FnCYM3ytEB46UI9ial4BHqIbMxlYTTAF8sft0ef2iqZJbVpWP2KYQlujrLUmxQMW7WCGnsYkge2PBAF43BoI3eMopYIMPfn_AJ7tThm9mhmgBh2WunliINUPzPaRcH6MHk5kLPLlbz9GXt7vPV-_J9cd3H65eXxPLpajETd3guGjhexiYHJQcqdtOXFLhFFNsUu2bKAg-UhioEKNrbD9JRw30o3T8HF2svu1xXxcoVQdfLMyziZCWolkvBVe93KqGPv8HvUlLji2dZqJTQnZSDI1iK2VzKiXDpI_ZB5NvdUf1qVm9Nqtbs_pXs5o10bM762UM4P5IflfZAL4CpR3FPeS_d__H9ifb17Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519571758</pqid></control><display><type>article</type><title>Deep learning model for prediction of extended-spectrum beta-lactamase (ESBL) production in community-onset Enterobacteriaceae bacteraemia from a high ESBL prevalence multi-centre cohort</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Alfred Lok Hang ; To, Curtis Chun Kit ; Lee, Angus Lang Sun ; Chan, Ronald Cheong Kin ; Wong, Janus Siu Him ; Wong, Chun Wai ; Chow, Viola Chi Ying ; Lai, Raymond Wai Man</creator><creatorcontrib>Lee, Alfred Lok Hang ; To, Curtis Chun Kit ; Lee, Angus Lang Sun ; Chan, Ronald Cheong Kin ; Wong, Janus Siu Him ; Wong, Chun Wai ; Chow, Viola Chi Ying ; Lai, Raymond Wai Man</creatorcontrib><description>Adequate empirical antimicrobial coverage is instrumental in clinical management of community-onset Enterobacteriaceae bacteraemia in areas with high ESBL prevalence, while balancing the risk of carbapenem overuse and emergence of carbapenem-resistant organisms. It is unknown whether machine learning offers additional advantages to conventional statistical methods in prediction of ESBL production. To develop a validated model to predict ESBL production in Enterobacteriaceae causing community-onset bacteraemia. 5625 patients with community-onset bacteraemia caused by
Escherichia coli
,
Klebsiella
species and
Proteus mirabilis
during 1 January 2015–31 December 2019 from three regional hospitals in Hong Kong were included in the analysis, after exclusion of blood cultures obtained beyond 48 h of admission. The prevalence of ESBL-producing Enterobacteriaceae was 23.7% (1335/5625). Deep neural network and other machine learning algorithms were compared against conventional statistical model via multivariable logistic regression. Primary outcomes compared consisted of predictive model area under curve of receiver-operator characteristic curve (AUC), and macro-averaged F1 score. Secondary outcomes included sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Deep neural network yielded an AUC of 0.761 (95% CI 0.725–0.797) and F1 score of 0.661 (95% CI 0.633–0.689), which was superior to logistic regression (AUC 0.667 (95% CI 0.627–0.707), F1 score 0.596 (95% CI 0.567–0.625)). Deep neural network had a specificity of 91.5%, sensitivity of 37.5%, NPV of 82.5%, and PPV of 57.9%. Deep neural network is superior to logistic regression in predicting ESBL production in Enterobacteriaceae causing community-onset bacteraemia in high-ESBL prevalence area. Machine learning offers clinical utility in guiding judicious empirical antibiotics use.</description><identifier>ISSN: 0934-9723</identifier><identifier>EISSN: 1435-4373</identifier><identifier>DOI: 10.1007/s10096-020-04120-2</identifier><identifier>PMID: 33399979</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Antibiotics ; Antiinfectives and antibacterials ; Artificial neural networks ; Bacteremia ; Biomedical and Life Sciences ; Biomedicine ; Deep learning ; E coli ; Empirical analysis ; Enterobacteriaceae ; Internal Medicine ; Klebsiella ; Learning algorithms ; Machine learning ; Mathematical models ; Medical Microbiology ; Neural networks ; Original Article ; Prediction models ; Regression models ; Sensitivity ; Statistical analysis ; Statistical methods ; Statistical models ; β Lactamase</subject><ispartof>European journal of clinical microbiology & infectious diseases, 2021-05, Vol.40 (5), p.1049-1061</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-df18d35ded4e827897b0d6f3705d9292f90930e53b0e8055bd5de4f7d0ae4b7d3</citedby><cites>FETCH-LOGICAL-c375t-df18d35ded4e827897b0d6f3705d9292f90930e53b0e8055bd5de4f7d0ae4b7d3</cites><orcidid>0000-0002-2161-1420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10096-020-04120-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10096-020-04120-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33399979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Alfred Lok Hang</creatorcontrib><creatorcontrib>To, Curtis Chun Kit</creatorcontrib><creatorcontrib>Lee, Angus Lang Sun</creatorcontrib><creatorcontrib>Chan, Ronald Cheong Kin</creatorcontrib><creatorcontrib>Wong, Janus Siu Him</creatorcontrib><creatorcontrib>Wong, Chun Wai</creatorcontrib><creatorcontrib>Chow, Viola Chi Ying</creatorcontrib><creatorcontrib>Lai, Raymond Wai Man</creatorcontrib><title>Deep learning model for prediction of extended-spectrum beta-lactamase (ESBL) production in community-onset Enterobacteriaceae bacteraemia from a high ESBL prevalence multi-centre cohort</title><title>European journal of clinical microbiology & infectious diseases</title><addtitle>Eur J Clin Microbiol Infect Dis</addtitle><addtitle>Eur J Clin Microbiol Infect Dis</addtitle><description>Adequate empirical antimicrobial coverage is instrumental in clinical management of community-onset Enterobacteriaceae bacteraemia in areas with high ESBL prevalence, while balancing the risk of carbapenem overuse and emergence of carbapenem-resistant organisms. It is unknown whether machine learning offers additional advantages to conventional statistical methods in prediction of ESBL production. To develop a validated model to predict ESBL production in Enterobacteriaceae causing community-onset bacteraemia. 5625 patients with community-onset bacteraemia caused by
Escherichia coli
,
Klebsiella
species and
Proteus mirabilis
during 1 January 2015–31 December 2019 from three regional hospitals in Hong Kong were included in the analysis, after exclusion of blood cultures obtained beyond 48 h of admission. The prevalence of ESBL-producing Enterobacteriaceae was 23.7% (1335/5625). Deep neural network and other machine learning algorithms were compared against conventional statistical model via multivariable logistic regression. Primary outcomes compared consisted of predictive model area under curve of receiver-operator characteristic curve (AUC), and macro-averaged F1 score. Secondary outcomes included sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Deep neural network yielded an AUC of 0.761 (95% CI 0.725–0.797) and F1 score of 0.661 (95% CI 0.633–0.689), which was superior to logistic regression (AUC 0.667 (95% CI 0.627–0.707), F1 score 0.596 (95% CI 0.567–0.625)). Deep neural network had a specificity of 91.5%, sensitivity of 37.5%, NPV of 82.5%, and PPV of 57.9%. Deep neural network is superior to logistic regression in predicting ESBL production in Enterobacteriaceae causing community-onset bacteraemia in high-ESBL prevalence area. Machine learning offers clinical utility in guiding judicious empirical antibiotics use.</description><subject>Algorithms</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Artificial neural networks</subject><subject>Bacteremia</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Deep learning</subject><subject>E coli</subject><subject>Empirical analysis</subject><subject>Enterobacteriaceae</subject><subject>Internal Medicine</subject><subject>Klebsiella</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Medical Microbiology</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Regression models</subject><subject>Sensitivity</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>β Lactamase</subject><issn>0934-9723</issn><issn>1435-4373</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc2OFCEUhYnROO3oC7gwJG7GBUpB0RRLZ2x_kklcqGtCwa1uJgW0QBnn1Xw6aWvUxIWbSwjfORw4CD3t6MuOUvmqtKm2hDJKaN-1ye6hTddzQXou-X20oYr3REnGz9CjUm5oEw1SPkRnnHOllFQb9OMNwBHPYHL0cY9DcjDjKWV8zOC8rT5FnCYM3ytEB46UI9ial4BHqIbMxlYTTAF8sft0ef2iqZJbVpWP2KYQlujrLUmxQMW7WCGnsYkge2PBAF43BoI3eMopYIMPfn_AJ7tThm9mhmgBh2WunliINUPzPaRcH6MHk5kLPLlbz9GXt7vPV-_J9cd3H65eXxPLpajETd3guGjhexiYHJQcqdtOXFLhFFNsUu2bKAg-UhioEKNrbD9JRw30o3T8HF2svu1xXxcoVQdfLMyziZCWolkvBVe93KqGPv8HvUlLji2dZqJTQnZSDI1iK2VzKiXDpI_ZB5NvdUf1qVm9Nqtbs_pXs5o10bM762UM4P5IflfZAL4CpR3FPeS_d__H9ifb17Hg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Lee, Alfred Lok Hang</creator><creator>To, Curtis Chun Kit</creator><creator>Lee, Angus Lang Sun</creator><creator>Chan, Ronald Cheong Kin</creator><creator>Wong, Janus Siu Him</creator><creator>Wong, Chun Wai</creator><creator>Chow, Viola Chi Ying</creator><creator>Lai, Raymond Wai Man</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2161-1420</orcidid></search><sort><creationdate>20210501</creationdate><title>Deep learning model for prediction of extended-spectrum beta-lactamase (ESBL) production in community-onset Enterobacteriaceae bacteraemia from a high ESBL prevalence multi-centre cohort</title><author>Lee, Alfred Lok Hang ; To, Curtis Chun Kit ; Lee, Angus Lang Sun ; Chan, Ronald Cheong Kin ; Wong, Janus Siu Him ; Wong, Chun Wai ; Chow, Viola Chi Ying ; Lai, Raymond Wai Man</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-df18d35ded4e827897b0d6f3705d9292f90930e53b0e8055bd5de4f7d0ae4b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Artificial neural networks</topic><topic>Bacteremia</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Deep learning</topic><topic>E coli</topic><topic>Empirical analysis</topic><topic>Enterobacteriaceae</topic><topic>Internal Medicine</topic><topic>Klebsiella</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Medical Microbiology</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Regression models</topic><topic>Sensitivity</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>β Lactamase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Alfred Lok Hang</creatorcontrib><creatorcontrib>To, Curtis Chun Kit</creatorcontrib><creatorcontrib>Lee, Angus Lang Sun</creatorcontrib><creatorcontrib>Chan, Ronald Cheong Kin</creatorcontrib><creatorcontrib>Wong, Janus Siu Him</creatorcontrib><creatorcontrib>Wong, Chun Wai</creatorcontrib><creatorcontrib>Chow, Viola Chi Ying</creatorcontrib><creatorcontrib>Lai, Raymond Wai Man</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of clinical microbiology & infectious diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Alfred Lok Hang</au><au>To, Curtis Chun Kit</au><au>Lee, Angus Lang Sun</au><au>Chan, Ronald Cheong Kin</au><au>Wong, Janus Siu Him</au><au>Wong, Chun Wai</au><au>Chow, Viola Chi Ying</au><au>Lai, Raymond Wai Man</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning model for prediction of extended-spectrum beta-lactamase (ESBL) production in community-onset Enterobacteriaceae bacteraemia from a high ESBL prevalence multi-centre cohort</atitle><jtitle>European journal of clinical microbiology & infectious diseases</jtitle><stitle>Eur J Clin Microbiol Infect Dis</stitle><addtitle>Eur J Clin Microbiol Infect Dis</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>40</volume><issue>5</issue><spage>1049</spage><epage>1061</epage><pages>1049-1061</pages><issn>0934-9723</issn><eissn>1435-4373</eissn><abstract>Adequate empirical antimicrobial coverage is instrumental in clinical management of community-onset Enterobacteriaceae bacteraemia in areas with high ESBL prevalence, while balancing the risk of carbapenem overuse and emergence of carbapenem-resistant organisms. It is unknown whether machine learning offers additional advantages to conventional statistical methods in prediction of ESBL production. To develop a validated model to predict ESBL production in Enterobacteriaceae causing community-onset bacteraemia. 5625 patients with community-onset bacteraemia caused by
Escherichia coli
,
Klebsiella
species and
Proteus mirabilis
during 1 January 2015–31 December 2019 from three regional hospitals in Hong Kong were included in the analysis, after exclusion of blood cultures obtained beyond 48 h of admission. The prevalence of ESBL-producing Enterobacteriaceae was 23.7% (1335/5625). Deep neural network and other machine learning algorithms were compared against conventional statistical model via multivariable logistic regression. Primary outcomes compared consisted of predictive model area under curve of receiver-operator characteristic curve (AUC), and macro-averaged F1 score. Secondary outcomes included sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Deep neural network yielded an AUC of 0.761 (95% CI 0.725–0.797) and F1 score of 0.661 (95% CI 0.633–0.689), which was superior to logistic regression (AUC 0.667 (95% CI 0.627–0.707), F1 score 0.596 (95% CI 0.567–0.625)). Deep neural network had a specificity of 91.5%, sensitivity of 37.5%, NPV of 82.5%, and PPV of 57.9%. Deep neural network is superior to logistic regression in predicting ESBL production in Enterobacteriaceae causing community-onset bacteraemia in high-ESBL prevalence area. Machine learning offers clinical utility in guiding judicious empirical antibiotics use.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33399979</pmid><doi>10.1007/s10096-020-04120-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2161-1420</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0934-9723 |
ispartof | European journal of clinical microbiology & infectious diseases, 2021-05, Vol.40 (5), p.1049-1061 |
issn | 0934-9723 1435-4373 |
language | eng |
recordid | cdi_proquest_miscellaneous_2475394769 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Antibiotics Antiinfectives and antibacterials Artificial neural networks Bacteremia Biomedical and Life Sciences Biomedicine Deep learning E coli Empirical analysis Enterobacteriaceae Internal Medicine Klebsiella Learning algorithms Machine learning Mathematical models Medical Microbiology Neural networks Original Article Prediction models Regression models Sensitivity Statistical analysis Statistical methods Statistical models β Lactamase |
title | Deep learning model for prediction of extended-spectrum beta-lactamase (ESBL) production in community-onset Enterobacteriaceae bacteraemia from a high ESBL prevalence multi-centre cohort |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20model%20for%20prediction%20of%20extended-spectrum%20beta-lactamase%20(ESBL)%20production%20in%20community-onset%20Enterobacteriaceae%20bacteraemia%20from%20a%20high%20ESBL%20prevalence%20multi-centre%20cohort&rft.jtitle=European%20journal%20of%20clinical%20microbiology%20&%20infectious%20diseases&rft.au=Lee,%20Alfred%20Lok%20Hang&rft.date=2021-05-01&rft.volume=40&rft.issue=5&rft.spage=1049&rft.epage=1061&rft.pages=1049-1061&rft.issn=0934-9723&rft.eissn=1435-4373&rft_id=info:doi/10.1007/s10096-020-04120-2&rft_dat=%3Cproquest_cross%3E2475394769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519571758&rft_id=info:pmid/33399979&rfr_iscdi=true |