Deep learning model for prediction of extended-spectrum beta-lactamase (ESBL) production in community-onset Enterobacteriaceae bacteraemia from a high ESBL prevalence multi-centre cohort

Adequate empirical antimicrobial coverage is instrumental in clinical management of community-onset Enterobacteriaceae bacteraemia in areas with high ESBL prevalence, while balancing the risk of carbapenem overuse and emergence of carbapenem-resistant organisms. It is unknown whether machine learnin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of clinical microbiology & infectious diseases 2021-05, Vol.40 (5), p.1049-1061
Hauptverfasser: Lee, Alfred Lok Hang, To, Curtis Chun Kit, Lee, Angus Lang Sun, Chan, Ronald Cheong Kin, Wong, Janus Siu Him, Wong, Chun Wai, Chow, Viola Chi Ying, Lai, Raymond Wai Man
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1061
container_issue 5
container_start_page 1049
container_title European journal of clinical microbiology & infectious diseases
container_volume 40
creator Lee, Alfred Lok Hang
To, Curtis Chun Kit
Lee, Angus Lang Sun
Chan, Ronald Cheong Kin
Wong, Janus Siu Him
Wong, Chun Wai
Chow, Viola Chi Ying
Lai, Raymond Wai Man
description Adequate empirical antimicrobial coverage is instrumental in clinical management of community-onset Enterobacteriaceae bacteraemia in areas with high ESBL prevalence, while balancing the risk of carbapenem overuse and emergence of carbapenem-resistant organisms. It is unknown whether machine learning offers additional advantages to conventional statistical methods in prediction of ESBL production. To develop a validated model to predict ESBL production in Enterobacteriaceae causing community-onset bacteraemia. 5625 patients with community-onset bacteraemia caused by Escherichia coli , Klebsiella species and Proteus mirabilis during 1 January 2015–31 December 2019 from three regional hospitals in Hong Kong were included in the analysis, after exclusion of blood cultures obtained beyond 48 h of admission. The prevalence of ESBL-producing Enterobacteriaceae was 23.7% (1335/5625). Deep neural network and other machine learning algorithms were compared against conventional statistical model via multivariable logistic regression. Primary outcomes compared consisted of predictive model area under curve of receiver-operator characteristic curve (AUC), and macro-averaged F1 score. Secondary outcomes included sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Deep neural network yielded an AUC of 0.761 (95% CI 0.725–0.797) and F1 score of 0.661 (95% CI 0.633–0.689), which was superior to logistic regression (AUC 0.667 (95% CI 0.627–0.707), F1 score 0.596 (95% CI 0.567–0.625)). Deep neural network had a specificity of 91.5%, sensitivity of 37.5%, NPV of 82.5%, and PPV of 57.9%. Deep neural network is superior to logistic regression in predicting ESBL production in Enterobacteriaceae causing community-onset bacteraemia in high-ESBL prevalence area. Machine learning offers clinical utility in guiding judicious empirical antibiotics use.
doi_str_mv 10.1007/s10096-020-04120-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475394769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475394769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-df18d35ded4e827897b0d6f3705d9292f90930e53b0e8055bd5de4f7d0ae4b7d3</originalsourceid><addsrcrecordid>eNp9kc2OFCEUhYnROO3oC7gwJG7GBUpB0RRLZ2x_kklcqGtCwa1uJgW0QBnn1Xw6aWvUxIWbSwjfORw4CD3t6MuOUvmqtKm2hDJKaN-1ye6hTddzQXou-X20oYr3REnGz9CjUm5oEw1SPkRnnHOllFQb9OMNwBHPYHL0cY9DcjDjKWV8zOC8rT5FnCYM3ytEB46UI9ial4BHqIbMxlYTTAF8sft0ef2iqZJbVpWP2KYQlujrLUmxQMW7WCGnsYkge2PBAF43BoI3eMopYIMPfn_AJ7tThm9mhmgBh2WunliINUPzPaRcH6MHk5kLPLlbz9GXt7vPV-_J9cd3H65eXxPLpajETd3guGjhexiYHJQcqdtOXFLhFFNsUu2bKAg-UhioEKNrbD9JRw30o3T8HF2svu1xXxcoVQdfLMyziZCWolkvBVe93KqGPv8HvUlLji2dZqJTQnZSDI1iK2VzKiXDpI_ZB5NvdUf1qVm9Nqtbs_pXs5o10bM762UM4P5IflfZAL4CpR3FPeS_d__H9ifb17Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519571758</pqid></control><display><type>article</type><title>Deep learning model for prediction of extended-spectrum beta-lactamase (ESBL) production in community-onset Enterobacteriaceae bacteraemia from a high ESBL prevalence multi-centre cohort</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Alfred Lok Hang ; To, Curtis Chun Kit ; Lee, Angus Lang Sun ; Chan, Ronald Cheong Kin ; Wong, Janus Siu Him ; Wong, Chun Wai ; Chow, Viola Chi Ying ; Lai, Raymond Wai Man</creator><creatorcontrib>Lee, Alfred Lok Hang ; To, Curtis Chun Kit ; Lee, Angus Lang Sun ; Chan, Ronald Cheong Kin ; Wong, Janus Siu Him ; Wong, Chun Wai ; Chow, Viola Chi Ying ; Lai, Raymond Wai Man</creatorcontrib><description>Adequate empirical antimicrobial coverage is instrumental in clinical management of community-onset Enterobacteriaceae bacteraemia in areas with high ESBL prevalence, while balancing the risk of carbapenem overuse and emergence of carbapenem-resistant organisms. It is unknown whether machine learning offers additional advantages to conventional statistical methods in prediction of ESBL production. To develop a validated model to predict ESBL production in Enterobacteriaceae causing community-onset bacteraemia. 5625 patients with community-onset bacteraemia caused by Escherichia coli , Klebsiella species and Proteus mirabilis during 1 January 2015–31 December 2019 from three regional hospitals in Hong Kong were included in the analysis, after exclusion of blood cultures obtained beyond 48 h of admission. The prevalence of ESBL-producing Enterobacteriaceae was 23.7% (1335/5625). Deep neural network and other machine learning algorithms were compared against conventional statistical model via multivariable logistic regression. Primary outcomes compared consisted of predictive model area under curve of receiver-operator characteristic curve (AUC), and macro-averaged F1 score. Secondary outcomes included sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Deep neural network yielded an AUC of 0.761 (95% CI 0.725–0.797) and F1 score of 0.661 (95% CI 0.633–0.689), which was superior to logistic regression (AUC 0.667 (95% CI 0.627–0.707), F1 score 0.596 (95% CI 0.567–0.625)). Deep neural network had a specificity of 91.5%, sensitivity of 37.5%, NPV of 82.5%, and PPV of 57.9%. Deep neural network is superior to logistic regression in predicting ESBL production in Enterobacteriaceae causing community-onset bacteraemia in high-ESBL prevalence area. Machine learning offers clinical utility in guiding judicious empirical antibiotics use.</description><identifier>ISSN: 0934-9723</identifier><identifier>EISSN: 1435-4373</identifier><identifier>DOI: 10.1007/s10096-020-04120-2</identifier><identifier>PMID: 33399979</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Antibiotics ; Antiinfectives and antibacterials ; Artificial neural networks ; Bacteremia ; Biomedical and Life Sciences ; Biomedicine ; Deep learning ; E coli ; Empirical analysis ; Enterobacteriaceae ; Internal Medicine ; Klebsiella ; Learning algorithms ; Machine learning ; Mathematical models ; Medical Microbiology ; Neural networks ; Original Article ; Prediction models ; Regression models ; Sensitivity ; Statistical analysis ; Statistical methods ; Statistical models ; β Lactamase</subject><ispartof>European journal of clinical microbiology &amp; infectious diseases, 2021-05, Vol.40 (5), p.1049-1061</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-df18d35ded4e827897b0d6f3705d9292f90930e53b0e8055bd5de4f7d0ae4b7d3</citedby><cites>FETCH-LOGICAL-c375t-df18d35ded4e827897b0d6f3705d9292f90930e53b0e8055bd5de4f7d0ae4b7d3</cites><orcidid>0000-0002-2161-1420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10096-020-04120-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10096-020-04120-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33399979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Alfred Lok Hang</creatorcontrib><creatorcontrib>To, Curtis Chun Kit</creatorcontrib><creatorcontrib>Lee, Angus Lang Sun</creatorcontrib><creatorcontrib>Chan, Ronald Cheong Kin</creatorcontrib><creatorcontrib>Wong, Janus Siu Him</creatorcontrib><creatorcontrib>Wong, Chun Wai</creatorcontrib><creatorcontrib>Chow, Viola Chi Ying</creatorcontrib><creatorcontrib>Lai, Raymond Wai Man</creatorcontrib><title>Deep learning model for prediction of extended-spectrum beta-lactamase (ESBL) production in community-onset Enterobacteriaceae bacteraemia from a high ESBL prevalence multi-centre cohort</title><title>European journal of clinical microbiology &amp; infectious diseases</title><addtitle>Eur J Clin Microbiol Infect Dis</addtitle><addtitle>Eur J Clin Microbiol Infect Dis</addtitle><description>Adequate empirical antimicrobial coverage is instrumental in clinical management of community-onset Enterobacteriaceae bacteraemia in areas with high ESBL prevalence, while balancing the risk of carbapenem overuse and emergence of carbapenem-resistant organisms. It is unknown whether machine learning offers additional advantages to conventional statistical methods in prediction of ESBL production. To develop a validated model to predict ESBL production in Enterobacteriaceae causing community-onset bacteraemia. 5625 patients with community-onset bacteraemia caused by Escherichia coli , Klebsiella species and Proteus mirabilis during 1 January 2015–31 December 2019 from three regional hospitals in Hong Kong were included in the analysis, after exclusion of blood cultures obtained beyond 48 h of admission. The prevalence of ESBL-producing Enterobacteriaceae was 23.7% (1335/5625). Deep neural network and other machine learning algorithms were compared against conventional statistical model via multivariable logistic regression. Primary outcomes compared consisted of predictive model area under curve of receiver-operator characteristic curve (AUC), and macro-averaged F1 score. Secondary outcomes included sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Deep neural network yielded an AUC of 0.761 (95% CI 0.725–0.797) and F1 score of 0.661 (95% CI 0.633–0.689), which was superior to logistic regression (AUC 0.667 (95% CI 0.627–0.707), F1 score 0.596 (95% CI 0.567–0.625)). Deep neural network had a specificity of 91.5%, sensitivity of 37.5%, NPV of 82.5%, and PPV of 57.9%. Deep neural network is superior to logistic regression in predicting ESBL production in Enterobacteriaceae causing community-onset bacteraemia in high-ESBL prevalence area. Machine learning offers clinical utility in guiding judicious empirical antibiotics use.</description><subject>Algorithms</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Artificial neural networks</subject><subject>Bacteremia</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Deep learning</subject><subject>E coli</subject><subject>Empirical analysis</subject><subject>Enterobacteriaceae</subject><subject>Internal Medicine</subject><subject>Klebsiella</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Medical Microbiology</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Regression models</subject><subject>Sensitivity</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>β Lactamase</subject><issn>0934-9723</issn><issn>1435-4373</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc2OFCEUhYnROO3oC7gwJG7GBUpB0RRLZ2x_kklcqGtCwa1uJgW0QBnn1Xw6aWvUxIWbSwjfORw4CD3t6MuOUvmqtKm2hDJKaN-1ye6hTddzQXou-X20oYr3REnGz9CjUm5oEw1SPkRnnHOllFQb9OMNwBHPYHL0cY9DcjDjKWV8zOC8rT5FnCYM3ytEB46UI9ial4BHqIbMxlYTTAF8sft0ef2iqZJbVpWP2KYQlujrLUmxQMW7WCGnsYkge2PBAF43BoI3eMopYIMPfn_AJ7tThm9mhmgBh2WunliINUPzPaRcH6MHk5kLPLlbz9GXt7vPV-_J9cd3H65eXxPLpajETd3guGjhexiYHJQcqdtOXFLhFFNsUu2bKAg-UhioEKNrbD9JRw30o3T8HF2svu1xXxcoVQdfLMyziZCWolkvBVe93KqGPv8HvUlLji2dZqJTQnZSDI1iK2VzKiXDpI_ZB5NvdUf1qVm9Nqtbs_pXs5o10bM762UM4P5IflfZAL4CpR3FPeS_d__H9ifb17Hg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Lee, Alfred Lok Hang</creator><creator>To, Curtis Chun Kit</creator><creator>Lee, Angus Lang Sun</creator><creator>Chan, Ronald Cheong Kin</creator><creator>Wong, Janus Siu Him</creator><creator>Wong, Chun Wai</creator><creator>Chow, Viola Chi Ying</creator><creator>Lai, Raymond Wai Man</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2161-1420</orcidid></search><sort><creationdate>20210501</creationdate><title>Deep learning model for prediction of extended-spectrum beta-lactamase (ESBL) production in community-onset Enterobacteriaceae bacteraemia from a high ESBL prevalence multi-centre cohort</title><author>Lee, Alfred Lok Hang ; To, Curtis Chun Kit ; Lee, Angus Lang Sun ; Chan, Ronald Cheong Kin ; Wong, Janus Siu Him ; Wong, Chun Wai ; Chow, Viola Chi Ying ; Lai, Raymond Wai Man</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-df18d35ded4e827897b0d6f3705d9292f90930e53b0e8055bd5de4f7d0ae4b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Artificial neural networks</topic><topic>Bacteremia</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Deep learning</topic><topic>E coli</topic><topic>Empirical analysis</topic><topic>Enterobacteriaceae</topic><topic>Internal Medicine</topic><topic>Klebsiella</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Medical Microbiology</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Regression models</topic><topic>Sensitivity</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>β Lactamase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Alfred Lok Hang</creatorcontrib><creatorcontrib>To, Curtis Chun Kit</creatorcontrib><creatorcontrib>Lee, Angus Lang Sun</creatorcontrib><creatorcontrib>Chan, Ronald Cheong Kin</creatorcontrib><creatorcontrib>Wong, Janus Siu Him</creatorcontrib><creatorcontrib>Wong, Chun Wai</creatorcontrib><creatorcontrib>Chow, Viola Chi Ying</creatorcontrib><creatorcontrib>Lai, Raymond Wai Man</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of clinical microbiology &amp; infectious diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Alfred Lok Hang</au><au>To, Curtis Chun Kit</au><au>Lee, Angus Lang Sun</au><au>Chan, Ronald Cheong Kin</au><au>Wong, Janus Siu Him</au><au>Wong, Chun Wai</au><au>Chow, Viola Chi Ying</au><au>Lai, Raymond Wai Man</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning model for prediction of extended-spectrum beta-lactamase (ESBL) production in community-onset Enterobacteriaceae bacteraemia from a high ESBL prevalence multi-centre cohort</atitle><jtitle>European journal of clinical microbiology &amp; infectious diseases</jtitle><stitle>Eur J Clin Microbiol Infect Dis</stitle><addtitle>Eur J Clin Microbiol Infect Dis</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>40</volume><issue>5</issue><spage>1049</spage><epage>1061</epage><pages>1049-1061</pages><issn>0934-9723</issn><eissn>1435-4373</eissn><abstract>Adequate empirical antimicrobial coverage is instrumental in clinical management of community-onset Enterobacteriaceae bacteraemia in areas with high ESBL prevalence, while balancing the risk of carbapenem overuse and emergence of carbapenem-resistant organisms. It is unknown whether machine learning offers additional advantages to conventional statistical methods in prediction of ESBL production. To develop a validated model to predict ESBL production in Enterobacteriaceae causing community-onset bacteraemia. 5625 patients with community-onset bacteraemia caused by Escherichia coli , Klebsiella species and Proteus mirabilis during 1 January 2015–31 December 2019 from three regional hospitals in Hong Kong were included in the analysis, after exclusion of blood cultures obtained beyond 48 h of admission. The prevalence of ESBL-producing Enterobacteriaceae was 23.7% (1335/5625). Deep neural network and other machine learning algorithms were compared against conventional statistical model via multivariable logistic regression. Primary outcomes compared consisted of predictive model area under curve of receiver-operator characteristic curve (AUC), and macro-averaged F1 score. Secondary outcomes included sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Deep neural network yielded an AUC of 0.761 (95% CI 0.725–0.797) and F1 score of 0.661 (95% CI 0.633–0.689), which was superior to logistic regression (AUC 0.667 (95% CI 0.627–0.707), F1 score 0.596 (95% CI 0.567–0.625)). Deep neural network had a specificity of 91.5%, sensitivity of 37.5%, NPV of 82.5%, and PPV of 57.9%. Deep neural network is superior to logistic regression in predicting ESBL production in Enterobacteriaceae causing community-onset bacteraemia in high-ESBL prevalence area. Machine learning offers clinical utility in guiding judicious empirical antibiotics use.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33399979</pmid><doi>10.1007/s10096-020-04120-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2161-1420</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0934-9723
ispartof European journal of clinical microbiology & infectious diseases, 2021-05, Vol.40 (5), p.1049-1061
issn 0934-9723
1435-4373
language eng
recordid cdi_proquest_miscellaneous_2475394769
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Antibiotics
Antiinfectives and antibacterials
Artificial neural networks
Bacteremia
Biomedical and Life Sciences
Biomedicine
Deep learning
E coli
Empirical analysis
Enterobacteriaceae
Internal Medicine
Klebsiella
Learning algorithms
Machine learning
Mathematical models
Medical Microbiology
Neural networks
Original Article
Prediction models
Regression models
Sensitivity
Statistical analysis
Statistical methods
Statistical models
β Lactamase
title Deep learning model for prediction of extended-spectrum beta-lactamase (ESBL) production in community-onset Enterobacteriaceae bacteraemia from a high ESBL prevalence multi-centre cohort
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20model%20for%20prediction%20of%20extended-spectrum%20beta-lactamase%20(ESBL)%20production%20in%20community-onset%20Enterobacteriaceae%20bacteraemia%20from%20a%20high%20ESBL%20prevalence%20multi-centre%20cohort&rft.jtitle=European%20journal%20of%20clinical%20microbiology%20&%20infectious%20diseases&rft.au=Lee,%20Alfred%20Lok%20Hang&rft.date=2021-05-01&rft.volume=40&rft.issue=5&rft.spage=1049&rft.epage=1061&rft.pages=1049-1061&rft.issn=0934-9723&rft.eissn=1435-4373&rft_id=info:doi/10.1007/s10096-020-04120-2&rft_dat=%3Cproquest_cross%3E2475394769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519571758&rft_id=info:pmid/33399979&rfr_iscdi=true