Deep learning model for prediction of extended-spectrum beta-lactamase (ESBL) production in community-onset Enterobacteriaceae bacteraemia from a high ESBL prevalence multi-centre cohort
Adequate empirical antimicrobial coverage is instrumental in clinical management of community-onset Enterobacteriaceae bacteraemia in areas with high ESBL prevalence, while balancing the risk of carbapenem overuse and emergence of carbapenem-resistant organisms. It is unknown whether machine learnin...
Gespeichert in:
Veröffentlicht in: | European journal of clinical microbiology & infectious diseases 2021-05, Vol.40 (5), p.1049-1061 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Adequate empirical antimicrobial coverage is instrumental in clinical management of community-onset Enterobacteriaceae bacteraemia in areas with high ESBL prevalence, while balancing the risk of carbapenem overuse and emergence of carbapenem-resistant organisms. It is unknown whether machine learning offers additional advantages to conventional statistical methods in prediction of ESBL production. To develop a validated model to predict ESBL production in Enterobacteriaceae causing community-onset bacteraemia. 5625 patients with community-onset bacteraemia caused by
Escherichia coli
,
Klebsiella
species and
Proteus mirabilis
during 1 January 2015–31 December 2019 from three regional hospitals in Hong Kong were included in the analysis, after exclusion of blood cultures obtained beyond 48 h of admission. The prevalence of ESBL-producing Enterobacteriaceae was 23.7% (1335/5625). Deep neural network and other machine learning algorithms were compared against conventional statistical model via multivariable logistic regression. Primary outcomes compared consisted of predictive model area under curve of receiver-operator characteristic curve (AUC), and macro-averaged F1 score. Secondary outcomes included sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Deep neural network yielded an AUC of 0.761 (95% CI 0.725–0.797) and F1 score of 0.661 (95% CI 0.633–0.689), which was superior to logistic regression (AUC 0.667 (95% CI 0.627–0.707), F1 score 0.596 (95% CI 0.567–0.625)). Deep neural network had a specificity of 91.5%, sensitivity of 37.5%, NPV of 82.5%, and PPV of 57.9%. Deep neural network is superior to logistic regression in predicting ESBL production in Enterobacteriaceae causing community-onset bacteraemia in high-ESBL prevalence area. Machine learning offers clinical utility in guiding judicious empirical antibiotics use. |
---|---|
ISSN: | 0934-9723 1435-4373 |
DOI: | 10.1007/s10096-020-04120-2 |