Bispectral analysis of overnight airflow to improve the pediatric sleep apnea diagnosis

Pediatric Obstructive Sleep Apnea (OSA) is a respiratory disease whose diagnosis is performed through overnight polysomnography (PSG). Since it is a complex, time-consuming, expensive, and labor-intensive test, simpler alternatives are being intensively sought. In this study, bispectral analysis of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2021-02, Vol.129, p.104167-104167, Article 104167
Hauptverfasser: Barroso-García, Verónica, Gutiérrez-Tobal, Gonzalo C., Kheirandish-Gozal, Leila, Vaquerizo-Villar, Fernando, Álvarez, Daniel, del Campo, Félix, Gozal, David, Hornero, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pediatric Obstructive Sleep Apnea (OSA) is a respiratory disease whose diagnosis is performed through overnight polysomnography (PSG). Since it is a complex, time-consuming, expensive, and labor-intensive test, simpler alternatives are being intensively sought. In this study, bispectral analysis of overnight airflow (AF) signal is proposed as a potential approach to replace PSG when indicated. Thus, our objective was to characterize AF through bispectrum, and assess its performance to diagnose pediatric OSA. This characterization was conducted using 13 bispectral features from 946 AF signals. The oxygen desaturation index ≥3% (ODI3), a common clinical measure of OSA severity, was also obtained to evaluate its complementarity to the AF bispectral analysis. The fast correlation-based filter (FCBF) and a multi-layer perceptron (MLP) were used for subsequent automatic feature selection and pattern recognition stages. FCBF selected 3 bispectral features and ODI3, which were used to train a MLP model with ability to estimate apnea-hypopnea index (AHI). The model reached 82.16%, 82.49%, and 90.15% accuracies for the common AHI cut-offs 1, 5, and 10 events/h, respectively. The different bispectral approaches used to characterize AF in children provided complementary information. Accordingly, bispectral analysis showed that the occurrence of apneic events decreases the non-gaussianity and non-linear interaction of the AF harmonic components, as well as the regularity of the respiratory patterns. Moreover, the bispectral information from AF also showed complementarity with ODI3. Our findings suggest that AF bispectral analysis may serve as a useful tool to simplify the diagnosis of pediatric OSA, particularly for children with moderate-to-severe OSA. •The bispectrum was able to characterize the pediatric nocturnal airflow.•It offered useful information about the occurrence of apneic events in children.•Different bispectral approaches provided complementary information to each other.•It also showed complementarity to 3% oximetry index, reducing its underestimation.•Its joint use could simplify the diagnosis of pediatric Obstructive Sleep Apnea.
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2020.104167