Biofilm Formation on Breast Implant Surfaces by Major Gram-Positive Bacterial Pathogens
Abstract Background Bacterial biofilm on surfaces of mammary implants is a predisposing factor for several outcomes. Because Gram-positive bacteria are potential agents of biomaterial-associated infections (BAIs), their abilities to form biofilm on breast implants should be elucidated. Objectives Th...
Gespeichert in:
Veröffentlicht in: | Aesthetic surgery journal 2021-10, Vol.41 (10), p.1144-1151 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Background
Bacterial biofilm on surfaces of mammary implants is a predisposing factor for several outcomes. Because Gram-positive bacteria are potential agents of biomaterial-associated infections (BAIs), their abilities to form biofilm on breast implants should be elucidated.
Objectives
The aim of this study was to evaluate biofilm formation on different mammary prosthesis surfaces by major Gram-positive bacterial pathogens involved in BAIs.
Methods
We initially evaluated biofilm formation on polystyrene plates with and without fibrinogen or collagen for 1 reference strain and 1 clinical isolate of Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes. We also tested the ability of clinical isolates to form biofilm on 4 different implant surfaces: polyurethane foam and smooth, microtextured, and standard textured silicone. Biofilm structure and cell viability were observed by scanning electron microscopy and confocal laser scanning microscopy.
Results
All strains showed strong biofilm formation on polystyrene. After fibrinogen or collagen treatment, biofilm formation varied. With fibrinogen, reference strains of S. aureus and S. pyogenes increased biofilm formation (P |
---|---|
ISSN: | 1090-820X 1527-330X |
DOI: | 10.1093/asj/sjaa416 |