Design of an ultra-compact low-crosstalk sinusoidal silicon waveguide array for optical phased array

In this work, an ultra-compact low-crosstalk sinusoidal silicon waveguide array is proposed and analyzed. We first design a pair of low-crosstalk sinusoidal silicon waveguides with a pitch of 695 nm, where the sinusoidal bends are the key to reduce the crosstalk between waveguides. Then, based on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-12, Vol.28 (25), p.37505-37513
Hauptverfasser: Yi, Xiaogen, Zeng, Huiying, Gao, Sai, Qiu, Ciyuan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, an ultra-compact low-crosstalk sinusoidal silicon waveguide array is proposed and analyzed. We first design a pair of low-crosstalk sinusoidal silicon waveguides with a pitch of 695 nm, where the sinusoidal bends are the key to reduce the crosstalk between waveguides. Then, based on this idea, we propose a low-crosstalk sinusoidal silicon waveguide array with a 695 nm pitch. The simulation results show that for an array length of 100 µm, the insertion loss is as low as 0.08 dB, and the crosstalk is lower than -26 dB at 1550 nm. The 695 nm pitch waveguide array also exhibits a favorable fabrication error tolerance when taking into account the waveguide width variations in practice. Moreover, within the acceptable range of crosstalk, the center-to-center distance between adjacent waveguides of this array can be further reduced to 615 nm. Since the pitch is related to the power consumption and beam-steering range of the optical phased array, our design provides an effective method to build the emitter for an energy-efficient optical phased array with a large field of view.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.405802