Matrix optics representation and imaging analysis of a light-field near-eye display

Integral-imaging-based (InI-based) light-field near-eye display (LF-NED) is an effective way to relieve vergence-accommodation conflict (VAC) in applications of virtual reality (VR) and augmented reality (AR). Lenslet arrays are often used as spatial light modulator (SLM) in such systems. However, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-12, Vol.28 (26), p.39976-39997
Hauptverfasser: Yao, Cheng, Cheng, Dewen, Wang, Yongtian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Integral-imaging-based (InI-based) light-field near-eye display (LF-NED) is an effective way to relieve vergence-accommodation conflict (VAC) in applications of virtual reality (VR) and augmented reality (AR). Lenslet arrays are often used as spatial light modulator (SLM) in such systems. However, the conflict between refocusing on a virtual object point from the light-field image (LF image) and focusing on the image plane of the lenslets leads to degradation of the viewing effect. Thus, the light field (LF) cannot be accurately restored. In this study, we introduce matrix optics and build a parameterized model of a lenslet-array-based LF-NED with general applicability, based on which the imaging process is derived, and the performance of the system is analyzed. A lenslet-array-based LF-NED optical model is embodied in LightTools to verify the theoretical model. The simulations prove that the model we propose and the conclusions about it are consistent with the simulation results. Thus, the model can be used as the theoretical basis for evaluating the primary performance of an InI-based LF-NED system.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.411997