Reducing computation complexity by using elastic net regularization based pruned Volterra equalization in a 80 Gbps PAM-4 signal for inter-data center interconnects
Volterra equalization (VE) presents substantial performance enhancement for high-speed optical signals but suffers from high computation complexity which limits its physical implementations. To address these limitations, we propose and experimentally demonstrate an elastic net regularization-based p...
Gespeichert in:
Veröffentlicht in: | Optics express 2020-12, Vol.28 (26), p.38539-38552 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Volterra equalization (VE) presents substantial performance enhancement for high-speed optical signals but suffers from high computation complexity which limits its physical implementations. To address these limitations, we propose and experimentally demonstrate an elastic net regularization-based pruned Volterra equalization (ENPVE) to reduce the computation complexity while still maintain system performance. Our proposed scheme prunes redundant weight coefficients with a three-phase configuration. Firstly, we pre-train the VE with an adaptive EN-regularizer to identify significant weights. Next, we prune the insignificant weights away. Finally, we retrain the equalizer by fine-tuning the remaining weight coefficients. Our proposed ENPVE achieves superior performance with reduced computation complexity. Compared with conventional VE and L1 regularization-based Volterra equalizer (L1VE), our approach show a complexity reduction of 97.4% and 20.2%, respectively, for an O-band 80-Gbps PAM4 signal at a received optical power of -4 dBm after 40 km SMF transmission. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.411465 |