Hitchhiking Behavior in Bacteriophages Facilitates Phage Infection and Enhances Carrier Bacteria Colonization
Interactions between bacteriophages (phages) and biofilms remain poorly understood despite the broad implications for microbial ecology, water quality, and microbiome engineering. Here, we demonstrate that lytic coliphage PHH01 can hitchhike on carrier bacteria Bacillus cereus to facilitate its infe...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2021-02, Vol.55 (4), p.2462-2472 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interactions between bacteriophages (phages) and biofilms remain poorly understood despite the broad implications for microbial ecology, water quality, and microbiome engineering. Here, we demonstrate that lytic coliphage PHH01 can hitchhike on carrier bacteria Bacillus cereus to facilitate its infection of host bacteria, Escherichia coli, in biofilms. Specifically, PHH01 could adsorb onto the flagella of B. cereus, and thus phage motility was increased, resulting in 4.36-fold more effective infection of E. coli in biofilm relative to free PHH01 alone. Moreover, phage infection mitigated interspecies competition and enhanced B. cereus colonization; the fraction of B. cereus in the final biofilm increased from 9% without phages to 43% with phages. The mutualistic relationship between the coliphage and carrier bacteria was substantiated by migration tests on an E. coli lawn: the conjugation of PHH01 and B. cereus enhanced B. cereus colonization by 6.54-fold compared to B. cereus alone (6.15 vs 0.94 cm2 in 24 h) and PHH01 migration by 5.15-fold compared to PHH01 alone (10.3 vs 2.0 mm in 24 h). Metagenomic and electron microscopic analysis revealed that the phages of diverse taxonomies and different morphologies could be adsorbed by the flagella of B. cereus, suggesting hitchhiking on flagellated bacteria might be a widespread strategy in aquatic phage populations. Overall, our study highlights that hitchhiking behavior in phages can facilitate phage infection of biofilm bacteria, promote carrier bacteria colonization, and thus significantly influence biofilm composition, which holds promise for mediating biofilm functions and moderating associated risks. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.0c06969 |