Online Counter Gradient LC-FT-ICR-MS Enables Detection of Highly Polar Natural Organic Matter Fractions

Natural organic matter (NOM) is a highly complex mixture of natural organic molecules. The recent developments in NOM molecular characterization methods have shown that ESI-FT-ICR hyphenated with liquid chromatography (LC) is a promising approach to also obtain chemical information (such as polarity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2021-01, Vol.93 (3), p.1740-1748
Hauptverfasser: Han, Limei, Kaesler, Jan, Peng, Chang, Reemtsma, Thorsten, Lechtenfeld, Oliver J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Natural organic matter (NOM) is a highly complex mixture of natural organic molecules. The recent developments in NOM molecular characterization methods have shown that ESI-FT-ICR hyphenated with liquid chromatography (LC) is a promising approach to also obtain chemical information (such as polarity and molecular size) about NOM molecules. However, due to changing solvent composition during gradient elution in LC-FT-ICR-MS, ionization conditions also change throughout the chromatographic separation process. In this study, we applied a post-LC column counter gradient (CG) to ensure stable solvent conditions for transient ESI-MS signals. Suwanee River Fulvic Acid (SRFA) standard and a peat pore water were used as representative dissolved NOM samples for method development and validation. Our results show that in polar NOM fractions (which elute with 0.6) were more than 20 times larger for CG-LC mode as compared to direct infusion (DI) (5715 vs 266 MF). We conclude that the application of a postcolumn counter gradient in LC-FT-ICR-MS analyses of NOM offers novel insight into the most polar fractions of NOM which are inaccessible in conventional DI measurements.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.0c04426