A mini-review on ion fluxes that regulate NLRP3 inflammasome activation
Abstract The activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome can be induced by a wide spectrum of activators. This is unlikely achieved by the binding of different activators directly to the NLRP3 protein itself, as the activators found so far show different forms of chemical...
Gespeichert in:
Veröffentlicht in: | Acta biochimica et biophysica Sinica 2021-02, Vol.53 (2), p.131-139 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
The activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome can be induced by a wide spectrum of activators. This is unlikely achieved by the binding of different activators directly to the NLRP3 protein itself, as the activators found so far show different forms of chemical structures. Previous studies have shown that these activators can induce potassium ion (K+) and chloride ion (Cl−) efflux, calcium (Ca2+) and other ion mobilization, mitochondrial dysfunction, and lysosomal disruption, all of which are believed to cause NLRP3 inflammasome activation; how these events are induced by the activators and how they coordinate with each other in inducing the NLRP3 inflammasome activation are not fully understood. Increasing evidence suggests that the coordinated change of intracellular ion concentrations may be a common mechanism for the NLRP3 activation by different activators. In this mini-review, we present a brief summary of the current knowledge about how different ionic flows (including K+, sodium ion, Ca2+, magnesium ion, manganese ion, zinc ion, iron ion, and Cl−) are involved in regulating the NLRP3 inflammasome activation in macrophages. |
---|---|
ISSN: | 1672-9145 1745-7270 |
DOI: | 10.1093/abbs/gmaa155 |