Self‐Assembled Type I Collagen‐Apatite Fibers with Varying Mineralization Extent and Luminescent Terbium Promote Osteogenic Differentiation of Mesenchymal Stem Cells
This work explores in depth the simultaneous self‐assembly and mineralization of type I collagen by a base‐acid neutralization technique to prepare biomimetic collagen‐apatite fibrils with varying mineralization extent and doped with luminescent bactericidal Tb3+ ions. Two variants of the method are...
Gespeichert in:
Veröffentlicht in: | Macromolecular bioscience 2021-03, Vol.21 (3), p.e2000319-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work explores in depth the simultaneous self‐assembly and mineralization of type I collagen by a base‐acid neutralization technique to prepare biomimetic collagen‐apatite fibrils with varying mineralization extent and doped with luminescent bactericidal Tb3+ ions. Two variants of the method are tested: base‐acid titration, a solution of Ca(OH)2 is added dropwise to a stirred solution containing type I collagen dispersed in H3PO4; and direct mixing, the Ca(OH)2 solution is added by fast dripping onto the acidic solution. Only the direct mixing variant yielded an effective control of calcium phosphate polymorphism. Luminescence spectroscopy reveals the long luminescence lifetime and high relative luminescence intensity of the Tb3+‐doped materials, while two‐photon confocal fluorescence microscopy shows the characteristic green fluorescence light when using excitation wavelength of 458 nm, which is not harmful to bone tissue. Cytotoxicity/viability tests reveal that direct mixing samples show higher cell proliferation than titration samples. Additionally, osteogenic differentiation essays show that all mineralized fibrils promote the osteogenic differentiation, but the effect is more pronounced when using samples prepared by direct mixing, and more notably when using the Tb3+‐doped mineralized fibrils. Based on these findings it is concluded that the new nanocomposite is an ideal candidate for bone regenerative therapy.
A methodology to simultaneously self‐assemble and mineralize type I collagen molecules by base‐acid neutralization allows the preparation of biomimetic collagen‐apatite fibers with varying mineralization extent, control of calcium phosphate polymorphism, and tailored luminescence by Tb3+ doping. The nanocomposites are cytocompatible and promote osteogenic differentiation of human mesenchymal stem cells, especially when using Tb3+‐doped materials. |
---|---|
ISSN: | 1616-5187 1616-5195 |
DOI: | 10.1002/mabi.202000319 |