Tunable broadband terahertz absorber based on plasmon hybridization in monolayer graphene ring arrays

Graphene as a new two-dimensional material can be utilized to design tunable optical devices owing to its exceptional physical properties, such as high mobility and tunable conductivity. In this paper, we present the design and analysis of a tunable broadband terahertz absorber based on periodic gra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2020-12, Vol.59 (35), p.11053-11058
Hauptverfasser: Hu, Dan, Meng, Tianhua, Wang, Hongyan, Ma, Yongkang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene as a new two-dimensional material can be utilized to design tunable optical devices owing to its exceptional physical properties, such as high mobility and tunable conductivity. In this paper, we present the design and analysis of a tunable broadband terahertz absorber based on periodic graphene ring arrays. Due to plasmon hybridization modes excited in the graphene ring, the proposed structure achieves a broad absorption bandwidth with more than 90% absorption in the frequency range of 0.88-2.10 THz under normal incidence, and its relative absorption bandwidth is about 81.88%. Meanwhile, it exhibits polarization-insensitive behavior and maintains high absorption over 80% when the incident angle is up to 45° for both TE and TM polarizations. Additionally, the peak absorption rate of the absorber can be tuned from 21% to nearly 100% by increasing the graphene's chemical potential from 0 to 0.9 eV. Such a design can have some potential applications in various terahertz devices, such as modulators, detectors, and spatial filters.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.409738