Properties of DNA- and Protein-Scaffolded Lipid Nanodiscs

The properties of natural lipid bilayers are vital to the regulation of many membrane proteins. Scaffolded nanodiscs provide an in vitro lipid bilayer platform to host membrane proteins in an environment that approximates native lipid bilayers. However, the properties of scaffold-enclosed bilayers m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-01, Vol.15 (1), p.751-764
Hauptverfasser: Maingi, Vishal, Rothemund, Paul W. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The properties of natural lipid bilayers are vital to the regulation of many membrane proteins. Scaffolded nanodiscs provide an in vitro lipid bilayer platform to host membrane proteins in an environment that approximates native lipid bilayers. However, the properties of scaffold-enclosed bilayers may depart significantly from those of bulk cellular membranes. Therefore, to improve the usefulness of nanodiscs it is essential to understand the properties of lipids restricted by scaffolds. We used computational molecular dynamics and modeling approaches to understand the effects of nanodisc size, scaffold type (DNA or protein), and hydrophobic modification of DNA scaffolds on bilayer stability and degree to which the properties of enclosed bilayers approximate bulk bilayers. With respect to achieving bulk bilayer behavior, we found that charge neutralization of DNA scaffolds was more important than the total hydrophobic content of their modifications: bilayer properties were better for scaffolds having a large number of short alkyl chains than those having fewer long alkyl chains. Further, complete charge neutralization of DNA scaffolds enabled better lipid binding, and more stable bilayers, as shown by steered molecular dynamics simulations that measured the force required to dislodge scaffolds from lipid bilayer patches. Considered together, our simulations provide a guide to the design of DNA-scaffolded nanodiscs suitable for studying membrane proteins.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.0c07128