Chiral Symmetry Breaking for Deterministic Switching of Perpendicular Magnetization by Spin-Orbit Torque

Symmetry breaking is a characteristic to determine which branch of a bifurcation system follows upon crossing a critical point. Specifically, in spin-orbit torque (SOT) devices, a fundamental question arises: how can the symmetry of the perpendicular magnetic moment be broken by the in-plane spin po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-01, Vol.21 (1), p.515-521
Hauptverfasser: Wu, Hao, Nance, John, Razavi, Seyed Armin, Lujan, David, Dai, Bingqian, Liu, Yuxiang, He, Haoran, Cui, Baoshan, Wu, Di, Wong, Kin, Sobotkiewich, Kemal, Li, Xiaoqin, Carman, Gregory P, Wang, Kang L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Symmetry breaking is a characteristic to determine which branch of a bifurcation system follows upon crossing a critical point. Specifically, in spin-orbit torque (SOT) devices, a fundamental question arises: how can the symmetry of the perpendicular magnetic moment be broken by the in-plane spin polarization? Here, we show that the chiral symmetry breaking by the antisymmetric Dzyaloshinskii-Moriya interaction (DMI) can induce the deterministic SOT switching of the perpendicular magnetization. By introducing a gradient of saturation magnetization or magnetic anisotropy, the dynamic noncollinear spin textures are formed under the current-driven SOT, and thus, the chiral symmetry of these dynamic spin textures is broken by the DMI, resulting in the deterministic magnetization switching. We introduce a strategy to induce an out-of-plane ( ) gradient of magnetic properties as a practical solution for the wafer-scale manufacture of SOT devices.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.0c03972