Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C

To understand the mechanisms responsible for thermal decomposition of a Zr-MOF (MIL-140C), we perform atomistic-scale molecular dynamics (MD) simulations and discuss the simulation data in comparison with the TEM images obtained for the decomposed Zr-MOF. First, we introduce the ReaxFF parameters su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-01, Vol.12 (1), p.177-184
Hauptverfasser: Dwivedi, Swarit, Kowalik, Malgorzata, Rosenbach, Nilton, Alqarni, Dalal S, Shin, Yun Kyung, Yang, Yongjian, Mauro, John C, Tanksale, Akshat, Chaffee, Alan L, van Duin, Adri C T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184
container_issue 1
container_start_page 177
container_title The journal of physical chemistry letters
container_volume 12
creator Dwivedi, Swarit
Kowalik, Malgorzata
Rosenbach, Nilton
Alqarni, Dalal S
Shin, Yun Kyung
Yang, Yongjian
Mauro, John C
Tanksale, Akshat
Chaffee, Alan L
van Duin, Adri C T
description To understand the mechanisms responsible for thermal decomposition of a Zr-MOF (MIL-140C), we perform atomistic-scale molecular dynamics (MD) simulations and discuss the simulation data in comparison with the TEM images obtained for the decomposed Zr-MOF. First, we introduce the ReaxFF parameters suitable for the Zr/C/H/O chemistry and then apply them to investigate the thermal stability and morphological changes in the MIL-140C during heating. Based on the performed simulations we propose an atomic mechanism for the collapse of the MIL-140C and the molecular pathways for carbon monoxide formation, the main product of the MIL-140C thermal degradation. We also determine that the oxidation state of the ZrO clusters, evolved due to the thermal degradation, approximates the tetragonal phase of ZrO . Both simulations and experiments show a distribution of very small ZrO clusters embedded in the disrupted organic sheet that could contribute to the unusual high catalytic activity of the decomposed MIL-140C.
doi_str_mv 10.1021/acs.jpclett.0c02930
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2470626745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470626745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-e35afc4f2fd5b7ec3a78ec30604c7a69ecb1267514542a5f750a9411ed59387d3</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMotlY_gSA5enDrZJNsdo-lWC209FJBvIQ0m9it-6cmKeK3N9JVvMwMzHtvmB9C1wTGBFJyr7Qf7_a6NiGMQUNaUDhBQ1KwPBEk56f_5gG68H4HkBWQi3M0oJSmBKgYopdJ6JrKh0rjpdFb1Va-8bizeL01rlE1XjvVetvFOVRdi6sWK_zqkqUJcblyb9Gh8cypxnx27v0OL-eLhDCYXqIzq2pvrvo-Qs-zh_X0KVmsHufTySLRFHhIDOXKamZTW_KNMJoqkccKGTAtVFYYvSFpJjhhnKWKW8FBFYwQU_KC5qKkI3R7zN277uNgfJDxHW3qWrWmO3iZMgFZTGA8SulRql3nvTNW7l3VKPclCcgfpDIilT1S2SONrpv-wGHTmPLP88uQfgPP5HQx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470626745</pqid></control><display><type>article</type><title>Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C</title><source>American Chemical Society Journals</source><creator>Dwivedi, Swarit ; Kowalik, Malgorzata ; Rosenbach, Nilton ; Alqarni, Dalal S ; Shin, Yun Kyung ; Yang, Yongjian ; Mauro, John C ; Tanksale, Akshat ; Chaffee, Alan L ; van Duin, Adri C T</creator><creatorcontrib>Dwivedi, Swarit ; Kowalik, Malgorzata ; Rosenbach, Nilton ; Alqarni, Dalal S ; Shin, Yun Kyung ; Yang, Yongjian ; Mauro, John C ; Tanksale, Akshat ; Chaffee, Alan L ; van Duin, Adri C T</creatorcontrib><description>To understand the mechanisms responsible for thermal decomposition of a Zr-MOF (MIL-140C), we perform atomistic-scale molecular dynamics (MD) simulations and discuss the simulation data in comparison with the TEM images obtained for the decomposed Zr-MOF. First, we introduce the ReaxFF parameters suitable for the Zr/C/H/O chemistry and then apply them to investigate the thermal stability and morphological changes in the MIL-140C during heating. Based on the performed simulations we propose an atomic mechanism for the collapse of the MIL-140C and the molecular pathways for carbon monoxide formation, the main product of the MIL-140C thermal degradation. We also determine that the oxidation state of the ZrO clusters, evolved due to the thermal degradation, approximates the tetragonal phase of ZrO . Both simulations and experiments show a distribution of very small ZrO clusters embedded in the disrupted organic sheet that could contribute to the unusual high catalytic activity of the decomposed MIL-140C.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.0c02930</identifier><identifier>PMID: 33321037</identifier><language>eng</language><publisher>United States</publisher><ispartof>The journal of physical chemistry letters, 2021-01, Vol.12 (1), p.177-184</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-e35afc4f2fd5b7ec3a78ec30604c7a69ecb1267514542a5f750a9411ed59387d3</citedby><cites>FETCH-LOGICAL-c305t-e35afc4f2fd5b7ec3a78ec30604c7a69ecb1267514542a5f750a9411ed59387d3</cites><orcidid>0000-0002-7087-0912 ; 0000-0001-5100-6910 ; 0000-0002-3478-4945 ; 0000-0001-8198-001X ; 0000-0002-4319-3530 ; 0000-0002-4639-5576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2751,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33321037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dwivedi, Swarit</creatorcontrib><creatorcontrib>Kowalik, Malgorzata</creatorcontrib><creatorcontrib>Rosenbach, Nilton</creatorcontrib><creatorcontrib>Alqarni, Dalal S</creatorcontrib><creatorcontrib>Shin, Yun Kyung</creatorcontrib><creatorcontrib>Yang, Yongjian</creatorcontrib><creatorcontrib>Mauro, John C</creatorcontrib><creatorcontrib>Tanksale, Akshat</creatorcontrib><creatorcontrib>Chaffee, Alan L</creatorcontrib><creatorcontrib>van Duin, Adri C T</creatorcontrib><title>Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C</title><title>The journal of physical chemistry letters</title><addtitle>J Phys Chem Lett</addtitle><description>To understand the mechanisms responsible for thermal decomposition of a Zr-MOF (MIL-140C), we perform atomistic-scale molecular dynamics (MD) simulations and discuss the simulation data in comparison with the TEM images obtained for the decomposed Zr-MOF. First, we introduce the ReaxFF parameters suitable for the Zr/C/H/O chemistry and then apply them to investigate the thermal stability and morphological changes in the MIL-140C during heating. Based on the performed simulations we propose an atomic mechanism for the collapse of the MIL-140C and the molecular pathways for carbon monoxide formation, the main product of the MIL-140C thermal degradation. We also determine that the oxidation state of the ZrO clusters, evolved due to the thermal degradation, approximates the tetragonal phase of ZrO . Both simulations and experiments show a distribution of very small ZrO clusters embedded in the disrupted organic sheet that could contribute to the unusual high catalytic activity of the decomposed MIL-140C.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMotlY_gSA5enDrZJNsdo-lWC209FJBvIQ0m9it-6cmKeK3N9JVvMwMzHtvmB9C1wTGBFJyr7Qf7_a6NiGMQUNaUDhBQ1KwPBEk56f_5gG68H4HkBWQi3M0oJSmBKgYopdJ6JrKh0rjpdFb1Va-8bizeL01rlE1XjvVetvFOVRdi6sWK_zqkqUJcblyb9Gh8cypxnx27v0OL-eLhDCYXqIzq2pvrvo-Qs-zh_X0KVmsHufTySLRFHhIDOXKamZTW_KNMJoqkccKGTAtVFYYvSFpJjhhnKWKW8FBFYwQU_KC5qKkI3R7zN277uNgfJDxHW3qWrWmO3iZMgFZTGA8SulRql3nvTNW7l3VKPclCcgfpDIilT1S2SONrpv-wGHTmPLP88uQfgPP5HQx</recordid><startdate>20210114</startdate><enddate>20210114</enddate><creator>Dwivedi, Swarit</creator><creator>Kowalik, Malgorzata</creator><creator>Rosenbach, Nilton</creator><creator>Alqarni, Dalal S</creator><creator>Shin, Yun Kyung</creator><creator>Yang, Yongjian</creator><creator>Mauro, John C</creator><creator>Tanksale, Akshat</creator><creator>Chaffee, Alan L</creator><creator>van Duin, Adri C T</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7087-0912</orcidid><orcidid>https://orcid.org/0000-0001-5100-6910</orcidid><orcidid>https://orcid.org/0000-0002-3478-4945</orcidid><orcidid>https://orcid.org/0000-0001-8198-001X</orcidid><orcidid>https://orcid.org/0000-0002-4319-3530</orcidid><orcidid>https://orcid.org/0000-0002-4639-5576</orcidid></search><sort><creationdate>20210114</creationdate><title>Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C</title><author>Dwivedi, Swarit ; Kowalik, Malgorzata ; Rosenbach, Nilton ; Alqarni, Dalal S ; Shin, Yun Kyung ; Yang, Yongjian ; Mauro, John C ; Tanksale, Akshat ; Chaffee, Alan L ; van Duin, Adri C T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-e35afc4f2fd5b7ec3a78ec30604c7a69ecb1267514542a5f750a9411ed59387d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dwivedi, Swarit</creatorcontrib><creatorcontrib>Kowalik, Malgorzata</creatorcontrib><creatorcontrib>Rosenbach, Nilton</creatorcontrib><creatorcontrib>Alqarni, Dalal S</creatorcontrib><creatorcontrib>Shin, Yun Kyung</creatorcontrib><creatorcontrib>Yang, Yongjian</creatorcontrib><creatorcontrib>Mauro, John C</creatorcontrib><creatorcontrib>Tanksale, Akshat</creatorcontrib><creatorcontrib>Chaffee, Alan L</creatorcontrib><creatorcontrib>van Duin, Adri C T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dwivedi, Swarit</au><au>Kowalik, Malgorzata</au><au>Rosenbach, Nilton</au><au>Alqarni, Dalal S</au><au>Shin, Yun Kyung</au><au>Yang, Yongjian</au><au>Mauro, John C</au><au>Tanksale, Akshat</au><au>Chaffee, Alan L</au><au>van Duin, Adri C T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J Phys Chem Lett</addtitle><date>2021-01-14</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>177</spage><epage>184</epage><pages>177-184</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>To understand the mechanisms responsible for thermal decomposition of a Zr-MOF (MIL-140C), we perform atomistic-scale molecular dynamics (MD) simulations and discuss the simulation data in comparison with the TEM images obtained for the decomposed Zr-MOF. First, we introduce the ReaxFF parameters suitable for the Zr/C/H/O chemistry and then apply them to investigate the thermal stability and morphological changes in the MIL-140C during heating. Based on the performed simulations we propose an atomic mechanism for the collapse of the MIL-140C and the molecular pathways for carbon monoxide formation, the main product of the MIL-140C thermal degradation. We also determine that the oxidation state of the ZrO clusters, evolved due to the thermal degradation, approximates the tetragonal phase of ZrO . Both simulations and experiments show a distribution of very small ZrO clusters embedded in the disrupted organic sheet that could contribute to the unusual high catalytic activity of the decomposed MIL-140C.</abstract><cop>United States</cop><pmid>33321037</pmid><doi>10.1021/acs.jpclett.0c02930</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7087-0912</orcidid><orcidid>https://orcid.org/0000-0001-5100-6910</orcidid><orcidid>https://orcid.org/0000-0002-3478-4945</orcidid><orcidid>https://orcid.org/0000-0001-8198-001X</orcidid><orcidid>https://orcid.org/0000-0002-4319-3530</orcidid><orcidid>https://orcid.org/0000-0002-4639-5576</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2021-01, Vol.12 (1), p.177-184
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2470626745
source American Chemical Society Journals
title Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20Mechanisms%20of%20Thermal%20Transformation%20in%20a%20Zr-Metal%20Organic%20Framework,%20MIL-140C&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Dwivedi,%20Swarit&rft.date=2021-01-14&rft.volume=12&rft.issue=1&rft.spage=177&rft.epage=184&rft.pages=177-184&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.0c02930&rft_dat=%3Cproquest_cross%3E2470626745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470626745&rft_id=info:pmid/33321037&rfr_iscdi=true