Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C

To understand the mechanisms responsible for thermal decomposition of a Zr-MOF (MIL-140C), we perform atomistic-scale molecular dynamics (MD) simulations and discuss the simulation data in comparison with the TEM images obtained for the decomposed Zr-MOF. First, we introduce the ReaxFF parameters su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-01, Vol.12 (1), p.177-184
Hauptverfasser: Dwivedi, Swarit, Kowalik, Malgorzata, Rosenbach, Nilton, Alqarni, Dalal S, Shin, Yun Kyung, Yang, Yongjian, Mauro, John C, Tanksale, Akshat, Chaffee, Alan L, van Duin, Adri C T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To understand the mechanisms responsible for thermal decomposition of a Zr-MOF (MIL-140C), we perform atomistic-scale molecular dynamics (MD) simulations and discuss the simulation data in comparison with the TEM images obtained for the decomposed Zr-MOF. First, we introduce the ReaxFF parameters suitable for the Zr/C/H/O chemistry and then apply them to investigate the thermal stability and morphological changes in the MIL-140C during heating. Based on the performed simulations we propose an atomic mechanism for the collapse of the MIL-140C and the molecular pathways for carbon monoxide formation, the main product of the MIL-140C thermal degradation. We also determine that the oxidation state of the ZrO clusters, evolved due to the thermal degradation, approximates the tetragonal phase of ZrO . Both simulations and experiments show a distribution of very small ZrO clusters embedded in the disrupted organic sheet that could contribute to the unusual high catalytic activity of the decomposed MIL-140C.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.0c02930