Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C
To understand the mechanisms responsible for thermal decomposition of a Zr-MOF (MIL-140C), we perform atomistic-scale molecular dynamics (MD) simulations and discuss the simulation data in comparison with the TEM images obtained for the decomposed Zr-MOF. First, we introduce the ReaxFF parameters su...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2021-01, Vol.12 (1), p.177-184 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To understand the mechanisms responsible for thermal decomposition of a Zr-MOF (MIL-140C), we perform atomistic-scale molecular dynamics (MD) simulations and discuss the simulation data in comparison with the TEM images obtained for the decomposed Zr-MOF. First, we introduce the ReaxFF parameters suitable for the Zr/C/H/O chemistry and then apply them to investigate the thermal stability and morphological changes in the MIL-140C during heating. Based on the performed simulations we propose an atomic mechanism for the collapse of the MIL-140C and the molecular pathways for carbon monoxide formation, the main product of the MIL-140C thermal degradation. We also determine that the oxidation state of the ZrO
clusters, evolved due to the thermal degradation, approximates the tetragonal phase of ZrO
. Both simulations and experiments show a distribution of very small ZrO
clusters embedded in the disrupted organic sheet that could contribute to the unusual high catalytic activity of the decomposed MIL-140C. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.0c02930 |