CuAlSe2 Inclusions Trigger Dynamic Cu+ Ion Depletion from the Cu2Se Matrix Enabling High Thermoelectric Performance

Atomic-scale incorporation of CuAlSe2 inclusions within the Cu2Se matrix, achieved through a solid-state transformation of CuSe2 template precursor using elemental Cu and Al, enables a unique temperature-dependent dynamic doping of the Cu2Se matrix. The CuAlSe2 inclusions, due to their ability to ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-12, Vol.12 (52), p.58018-58027
Hauptverfasser: Lu, Ruiming, Olvera, Alan, Bailey, Trevor P, Uher, Ctirad, Poudeu, Pierre F. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atomic-scale incorporation of CuAlSe2 inclusions within the Cu2Se matrix, achieved through a solid-state transformation of CuSe2 template precursor using elemental Cu and Al, enables a unique temperature-dependent dynamic doping of the Cu2Se matrix. The CuAlSe2 inclusions, due to their ability to accommodate a large fraction of excess metal atoms within their crystal lattice, serve as a “reservoir” for Cu ions diffusing away from the Cu2Se matrix. Such unidirectional diffusion of Cu ions from the Cu2Se matrix to the CuAlSe2 inclusion leads to the formation, near the CuAlSe2/Cu2Se interface, of a high density of Cu-deficient β-Cu2−δSe nanoparticles within the α-Cu2Se matrix and the formation of Cu-rich Cu1+y AlSe2 nanoparticles with the CuAlSe2 inclusions. This gives rise to a large enhancement in carrier concentration and electrical conductivity at elevated temperatures. Furthermore, the nanostructuring near the CuAlSe2/Cu2Se interface, as well as the extensive atomic disorder in the Cu2Se and CuAlSe2 phases, significantly increases phonon scattering, leading to suppressed lattice thermal conductivity. Consequently, a significant improvement in ZT is observed for selected Cu2Se/CuAlSe2 composites. This work demonstrates the use of in situ-formed interactive secondary phases in a semiconducting matrix as an elegant alternative approach for further improvement of the performance of leading thermoelectric materials.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c17659