Reprogramming the genetic code

The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion — which commonly permits the cellula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Genetics 2021-03, Vol.22 (3), p.169-184
Hauptverfasser: de la Torre, Daniel, Chin, Jason W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184
container_issue 3
container_start_page 169
container_title Nature reviews. Genetics
container_volume 22
creator de la Torre, Daniel
Chin, Jason W.
description The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion — which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein — to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics. The ability to reprogramme cellular translation and genomes to produce non-canonical biopolymers has wide-ranging applications, including in therapeutics, but has yet to be fully realized. In this Review, de la Torre and Chin discuss recent advances towards achieving this goal.
doi_str_mv 10.1038/s41576-020-00307-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2470284167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A655715852</galeid><sourcerecordid>A655715852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-e0f0606f98468fac7a4b830a718ad2819682637f618ae78c6e96b4947d4a8edf3</originalsourceid><addsrcrecordid>eNp9kVFLHTEQhYNYqrX9Az7IBaG0D6vJJplkH0VsKwgFa59Dbnayd2V3o0kW7L83t9dqb5GSh2Qm3xmGcwg5ZPSEUa5Pk2BSQUVrWlHKqarUDtlnQrFSgth9fkvYI-9SuqWUAVP8LdnjnDOtKOyTo2u8i6GLdhz7qVvkFS46nDD3buFCi-_JG2-HhB-e7gPy88vFzfm36ur718vzs6vKSQm5QuopUPCNFqC9dcqKpebUKqZtW2vWgK6BKw-lRqUdYANL0QjVCqux9fyAfNrMLcvcz5iyGfvkcBjshGFOphaK1lowUAU9_ge9DXOcynaFapjgqgH5QnV2QNNPPuRo3XqoOQMpFZNa1oU6eYUqp8Wxd2FC35f-luDzlqAwGR9yZ-eUzOWP623241_sCu2QVykMc-7DlLbBegO6GFKK6M1d7EcbfxlGzTpps0nalKTN76TN2oajJxvm5Yjts-RPtAXgGyCVr6nD-OLTf8Y-AixfrQk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491437965</pqid></control><display><type>article</type><title>Reprogramming the genetic code</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>de la Torre, Daniel ; Chin, Jason W.</creator><creatorcontrib>de la Torre, Daniel ; Chin, Jason W.</creatorcontrib><description>The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion — which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein — to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics. The ability to reprogramme cellular translation and genomes to produce non-canonical biopolymers has wide-ranging applications, including in therapeutics, but has yet to be fully realized. In this Review, de la Torre and Chin discuss recent advances towards achieving this goal.</description><identifier>ISSN: 1471-0056</identifier><identifier>EISSN: 1471-0064</identifier><identifier>DOI: 10.1038/s41576-020-00307-7</identifier><identifier>PMID: 33318706</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/1511 ; 631/553/552 ; 631/61 ; Agriculture ; Amino acids ; Amino Acids - genetics ; Animal Genetics and Genomics ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Biopolymers ; Cancer Research ; Cellular Reprogramming - genetics ; Codon - genetics ; Codons ; DNA - genetics ; Gene Function ; Genetic aspects ; Genetic code ; Genetic Code - genetics ; Genetic research ; Genomes ; Human Genetics ; Humans ; Production processes ; Protein biosynthesis ; Protein Biosynthesis - genetics ; Proteins - genetics ; Review Article</subject><ispartof>Nature reviews. Genetics, 2021-03, Vol.22 (3), p.169-184</ispartof><rights>Springer Nature Limited 2020</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-e0f0606f98468fac7a4b830a718ad2819682637f618ae78c6e96b4947d4a8edf3</citedby><cites>FETCH-LOGICAL-c556t-e0f0606f98468fac7a4b830a718ad2819682637f618ae78c6e96b4947d4a8edf3</cites><orcidid>0000-0002-9545-9388 ; 0000-0003-1219-4757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41576-020-00307-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41576-020-00307-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33318706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de la Torre, Daniel</creatorcontrib><creatorcontrib>Chin, Jason W.</creatorcontrib><title>Reprogramming the genetic code</title><title>Nature reviews. Genetics</title><addtitle>Nat Rev Genet</addtitle><addtitle>Nat Rev Genet</addtitle><description>The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion — which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein — to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics. The ability to reprogramme cellular translation and genomes to produce non-canonical biopolymers has wide-ranging applications, including in therapeutics, but has yet to be fully realized. In this Review, de la Torre and Chin discuss recent advances towards achieving this goal.</description><subject>631/1647/1511</subject><subject>631/553/552</subject><subject>631/61</subject><subject>Agriculture</subject><subject>Amino acids</subject><subject>Amino Acids - genetics</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biopolymers</subject><subject>Cancer Research</subject><subject>Cellular Reprogramming - genetics</subject><subject>Codon - genetics</subject><subject>Codons</subject><subject>DNA - genetics</subject><subject>Gene Function</subject><subject>Genetic aspects</subject><subject>Genetic code</subject><subject>Genetic Code - genetics</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Production processes</subject><subject>Protein biosynthesis</subject><subject>Protein Biosynthesis - genetics</subject><subject>Proteins - genetics</subject><subject>Review Article</subject><issn>1471-0056</issn><issn>1471-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kVFLHTEQhYNYqrX9Az7IBaG0D6vJJplkH0VsKwgFa59Dbnayd2V3o0kW7L83t9dqb5GSh2Qm3xmGcwg5ZPSEUa5Pk2BSQUVrWlHKqarUDtlnQrFSgth9fkvYI-9SuqWUAVP8LdnjnDOtKOyTo2u8i6GLdhz7qVvkFS46nDD3buFCi-_JG2-HhB-e7gPy88vFzfm36ur718vzs6vKSQm5QuopUPCNFqC9dcqKpebUKqZtW2vWgK6BKw-lRqUdYANL0QjVCqux9fyAfNrMLcvcz5iyGfvkcBjshGFOphaK1lowUAU9_ge9DXOcynaFapjgqgH5QnV2QNNPPuRo3XqoOQMpFZNa1oU6eYUqp8Wxd2FC35f-luDzlqAwGR9yZ-eUzOWP623241_sCu2QVykMc-7DlLbBegO6GFKK6M1d7EcbfxlGzTpps0nalKTN76TN2oajJxvm5Yjts-RPtAXgGyCVr6nD-OLTf8Y-AixfrQk</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>de la Torre, Daniel</creator><creator>Chin, Jason W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9545-9388</orcidid><orcidid>https://orcid.org/0000-0003-1219-4757</orcidid></search><sort><creationdate>20210301</creationdate><title>Reprogramming the genetic code</title><author>de la Torre, Daniel ; Chin, Jason W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-e0f0606f98468fac7a4b830a718ad2819682637f618ae78c6e96b4947d4a8edf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647/1511</topic><topic>631/553/552</topic><topic>631/61</topic><topic>Agriculture</topic><topic>Amino acids</topic><topic>Amino Acids - genetics</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biopolymers</topic><topic>Cancer Research</topic><topic>Cellular Reprogramming - genetics</topic><topic>Codon - genetics</topic><topic>Codons</topic><topic>DNA - genetics</topic><topic>Gene Function</topic><topic>Genetic aspects</topic><topic>Genetic code</topic><topic>Genetic Code - genetics</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Production processes</topic><topic>Protein biosynthesis</topic><topic>Protein Biosynthesis - genetics</topic><topic>Proteins - genetics</topic><topic>Review Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de la Torre, Daniel</creatorcontrib><creatorcontrib>Chin, Jason W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature reviews. Genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de la Torre, Daniel</au><au>Chin, Jason W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reprogramming the genetic code</atitle><jtitle>Nature reviews. Genetics</jtitle><stitle>Nat Rev Genet</stitle><addtitle>Nat Rev Genet</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>22</volume><issue>3</issue><spage>169</spage><epage>184</epage><pages>169-184</pages><issn>1471-0056</issn><eissn>1471-0064</eissn><abstract>The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion — which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein — to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics. The ability to reprogramme cellular translation and genomes to produce non-canonical biopolymers has wide-ranging applications, including in therapeutics, but has yet to be fully realized. In this Review, de la Torre and Chin discuss recent advances towards achieving this goal.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33318706</pmid><doi>10.1038/s41576-020-00307-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9545-9388</orcidid><orcidid>https://orcid.org/0000-0003-1219-4757</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1471-0056
ispartof Nature reviews. Genetics, 2021-03, Vol.22 (3), p.169-184
issn 1471-0056
1471-0064
language eng
recordid cdi_proquest_miscellaneous_2470284167
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/1647/1511
631/553/552
631/61
Agriculture
Amino acids
Amino Acids - genetics
Animal Genetics and Genomics
Animals
Biomedical and Life Sciences
Biomedicine
Biopolymers
Cancer Research
Cellular Reprogramming - genetics
Codon - genetics
Codons
DNA - genetics
Gene Function
Genetic aspects
Genetic code
Genetic Code - genetics
Genetic research
Genomes
Human Genetics
Humans
Production processes
Protein biosynthesis
Protein Biosynthesis - genetics
Proteins - genetics
Review Article
title Reprogramming the genetic code
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reprogramming%20the%20genetic%20code&rft.jtitle=Nature%20reviews.%20Genetics&rft.au=de%20la%20Torre,%20Daniel&rft.date=2021-03-01&rft.volume=22&rft.issue=3&rft.spage=169&rft.epage=184&rft.pages=169-184&rft.issn=1471-0056&rft.eissn=1471-0064&rft_id=info:doi/10.1038/s41576-020-00307-7&rft_dat=%3Cgale_proqu%3EA655715852%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491437965&rft_id=info:pmid/33318706&rft_galeid=A655715852&rfr_iscdi=true