Reprogramming the genetic code

The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion — which commonly permits the cellula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Genetics 2021-03, Vol.22 (3), p.169-184
Hauptverfasser: de la Torre, Daniel, Chin, Jason W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion — which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein — to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics. The ability to reprogramme cellular translation and genomes to produce non-canonical biopolymers has wide-ranging applications, including in therapeutics, but has yet to be fully realized. In this Review, de la Torre and Chin discuss recent advances towards achieving this goal.
ISSN:1471-0056
1471-0064
DOI:10.1038/s41576-020-00307-7