Control of Molecular Orientation in Organic Semiconductors Using Weak Iodine-Iodine Interactions

Controlling the molecular orientation of materials is a key issue for improving the performance of organic semiconductor devices. Herein, we demonstrate the structure-property relationships of iodinated and noniodinated molecules based on an asymmetric thienoacene framework. The noniodinated molecul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-01, Vol.12 (1), p.111-116
Hauptverfasser: Matsunaga, Amane, Ogawa, Yuta, Kumaki, Daisuke, Tokito, Shizuo, Katagiri, Hiroshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Controlling the molecular orientation of materials is a key issue for improving the performance of organic semiconductor devices. Herein, we demonstrate the structure-property relationships of iodinated and noniodinated molecules based on an asymmetric thienoacene framework. The noniodinated molecule formed an antiparallel slip-stack structure with small orbital overlap between molecules. In contrast, the iodinated molecule formed a head-to-head layered-herringbone structure, and as a result, the transfer integrals became larger and the hole mobility increased significantly compared with the noniodinated material. The iodinated molecule was made into a stable and solution-processable p-type organic semiconductor with a mobility of 2.2 cm V s , which was 2 orders of magnitude higher than that of the noniodinated molecule. This study reveals that controlling molecular orientations using iodine-iodine interactions is a promising strategy for accelerating the development of organic semiconductor materials.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.0c02978