Synthesis, characterization and photocatalytic performance of W6+ impregnated g-C3N4 for the removal of chlorophenol derivatives in natural sunlight exposure

The surface of the g-C3N4 was altered by impregnating W6+ ions that transformed to homogeneously coated oxide layer by a calcination process. An enhanced absorption and the suppressed de-excitation in the emission spectra, with the increasing W6+ loading, exposed the supporting role of the coated la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2021-02, Vol.265, p.129135-129135, Article 129135
Hauptverfasser: Alenazi, Duna A.K., Chandrasekaran, Sivaraman, Soomro, M. Tahir, Aslam, M., Hameed, A., Ali, Shahid, Danish, Ekram Y., Ismail, Iqbal M.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The surface of the g-C3N4 was altered by impregnating W6+ ions that transformed to homogeneously coated oxide layer by a calcination process. An enhanced absorption and the suppressed de-excitation in the emission spectra, with the increasing W6+ loading, exposed the supporting role of the coated layer in extending the spectral response as well as the prolonged life span of excitons. The same was further supported by electrochemical impedance spectroscopy (EIS). The XRD and XPS analysis revealed the coated layer as highly crystalline pure phase monoclinic WO3 with the majority of impregnated tungsten ions in 6+ oxidation state respectively, whereas the FESEM and HRTEM analysis substantiated the uniformity of the coated layer with the interlayer spacing of the 0.369 nm. Additionally, the probable formation of individual WO3 nanoparticles or clusters was ruled out. The as-synthesized impregnated photocatalysts, in comparison to pure g-C3N4, were subjected to natural sunlight exposure for the photocatalytic removal of chlorophenol derivatives (2-CP, 3-CP, 4-CP, 2,3-DCP, 2,4-DCP, 2,4,6-TCP and PCP) that revealed the 5 wt% coating as the optimum level for significant removal. The progress of the photocatalytic process was monitored by periodic HPLC analysis whereas ion chromatography (IC) was used for the estimation of released ions. The mineralization capability of the as-synthesized W6+ coated catalysts was measured by the time scale TOC measurements. As the formation of intermediates was indicated in HPLC analysis, selected samples were subjected to GC-MS analysis for the identification of the nature of intermediates. The variable degree of removal of chlorophenol derivatives signified the role of the position and orientation of Cl group. The kinetics of the removal process was evaluated with the calculation of rate constants. The results extracted from the analytical tools and the associated band edge potentials were correlated to speculate the probable mechanism as well as the identification of major reactive oxygen species (ROS) involved in the removal process. [Display omitted] •W6+ ions attached to the surface of g-C3N4 by electrostatic interactions.•The red shift in the absorption edge with the surface coating verified the electronic interactions.•The position of the Cl groups determines the probable rate of removal.•The secondary interactions between the ROS and intermediates lead to mineralization.•The developed catalyst established its efficacy for
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2020.129135