High Entropy and Low Symmetry: Triclinic High-Entropy Molybdates

Metal molybdates constitute a promising class of materials with a wide application range. Here, we report, to our knowledge for the first time, on the preparation and characterization of medium-entropy and high-entropy metal molybdates, synthesized by an oxalate-based coprecipitation approach. The h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2021-01, Vol.60 (1), p.115-123
Hauptverfasser: Stenzel, David, Issac, Ibrahim, Wang, Kai, Azmi, Raheleh, Singh, Ruby, Jeong, Jaehoon, Najib, Saleem, Bhattacharya, Subramshu S, Hahn, Horst, Brezesinski, Torsten, Schweidler, Simon, Breitung, Ben
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal molybdates constitute a promising class of materials with a wide application range. Here, we report, to our knowledge for the first time, on the preparation and characterization of medium-entropy and high-entropy metal molybdates, synthesized by an oxalate-based coprecipitation approach. The high-entropy molybdate crystallizes in a triclinic structure, thus rendering it as high-entropy material with the lowest symmetry reported so far. This is noteworthy because high-entropy materials usually tend to crystallize into highly symmetrical structures. It is expected that application of the high-entropy concept to metal molybdates alters the material's characteristics and adds the features of high-entropy systems, that is, tailorable composition and properties. The phase purity and solid solution nature of the molybdates were confirmed by XRD, Raman spectroscopy, TEM, XPS, and ICP-OES.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.0c02501