Precipitation-optimised targeting of nitrogen fertilisers in a model maize cropping system

Typically, half of the nitrogen (N) fertiliser applied to agricultural fields is lost to the wider environment. This inefficiency is driven by soil processes such as denitrification, volatilisation, surface run-off and leaching. Rainfall plays an important role in regulating these processes, ultimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-02, Vol.756, p.144051-144051, Article 144051
Hauptverfasser: McKay Fletcher, D.M., Ruiz, S.A., Dias, T., Chadwick, D.R., Jones, D.L., Roose, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Typically, half of the nitrogen (N) fertiliser applied to agricultural fields is lost to the wider environment. This inefficiency is driven by soil processes such as denitrification, volatilisation, surface run-off and leaching. Rainfall plays an important role in regulating these processes, ultimately governing when and where N fertiliser moves in soil and its susceptibility to gaseous loss. The interaction between rainfall, plant N uptake and N losses, however, remains poorly understood. In this study we use numerical modelling to predict the optimal N fertilisation strategy with respect to rainfall patterns and offer mechanistic explanations to the resultant differences in optimal times of fertiliser application. We developed a modelling framework that describes water and N transport in soil over a growing season and assesses nitrogen use efficiency (NUE) of split fertilisations within the context of different rainfall patterns. We used ninety rainfall patterns to determine their impact on optimal N fertilisation times. We considered the effects of root growth, root N uptake, microbial transformation of N and the effect of soil water saturation and flow on N movement in the soil profile. On average, we show that weather-optimised fertilisation strategies could improve crop N uptake by 20% compared to the mean uptake. In drier years, weather-optimising N applications improved the efficiency of crop N recovery by 35%. Further analysis shows that maximum plant N uptake is greatest under drier conditions due to reduced leaching, but it is harder to find the maximum due to low N mobility. The model could capture contrasting trends in NUE seen in previous arable cropping field trials. Furthermore, the model predicted that the variability in NUE seen in the field could be associated with precipitation-driven differences in N leaching and mobility. In conclusion, our results show that NUE in cropping systems could be significantly enhanced by synchronising fertiliser timings with both crop N demand and local weather patterns. [Display omitted] •Optimising N fertilisation strategies for uncertain precipitation climates was investigated.•Study considers optimal fertilisation applications (hydro/anthropo/bio/lithosphere).•Coupled model is used to optimise N use by crops considering stochastic rainfall patterns.•N use is suboptimal in wet conditions due to leaching and in dry conditions due to low mobility.•Best crop N use is achievable under dry conditions but req
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.144051