Temperature-induced liquid crystal microdroplet formation in a partially miscible liquid mixture
Liquid-in-liquid droplets are typically generated by the partitioning of immiscible fluids, e.g. by mechanical shearing with macroscopic homogenisers or microfluidic flow focussing. In contrast, partially miscible liquids with a critical solution temperature display a temperature-dependent mixing be...
Gespeichert in:
Veröffentlicht in: | Soft matter 2021-01, Vol.17 (4), p.947-954 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 954 |
---|---|
container_issue | 4 |
container_start_page | 947 |
container_title | Soft matter |
container_volume | 17 |
creator | Patel, Mehzabin Radhakrishnan, Anand N. P Bescher, Ludovic Hunter-Sellars, Elwin Schmidt-Hansberg, Benjamin Amstad, Esther Ibsen, Stuart Guldin, Stefan |
description | Liquid-in-liquid droplets are typically generated by the partitioning of immiscible fluids,
e.g.
by mechanical shearing with macroscopic homogenisers or microfluidic flow focussing. In contrast, partially miscible liquids with a critical solution temperature display a temperature-dependent mixing behaviour. In this work, we demonstrate how, for a blend of methanol (MeOH) and the thermotropic liquid crystal (LC) 4-Cyano-4′-pentylbiphenyl (5CB), cooling from a miscible to an immiscible state allows the controlled formation of microdroplets. A near-room-temperature-induced phase separation leads to nucleation, growth and coalescence of mesogen-rich droplets. The size and number of the droplets is tunable on the microscopic scale by variation of temperature quench depth and cooling rate. Further cooling induces a phase transition to nematic droplets with radial configuration, well-defined sizes and stability over the course of an hour. This temperature-induced approach offers a scalable and reversible alternative to droplet formation with relevance in diagnostics, optoelectronics, materials templating and extraction processes.
We demonstrate how, for a binary blend of a thermotropic liquid crystal and methanol, cooling from a miscible to an immiscible state induces the reversible formation of microdroplets, whose size, number and mesogen orientation can be controlled by the temperature protocol. |
doi_str_mv | 10.1039/d0sm01742f |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2467841057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467841057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-2cda0be5b599057da99dba2c1b2978f723d9b53c4dd225ea37b62bd0c0b66cb43</originalsourceid><addsrcrecordid>eNpd0UtLxDAQB_AgiqurF-9KwYsI1TRJk-Yoq6vCigdX8FbzKmRJHyYtuN_erPsQPE0gv_yZmQBwlsGbDGJ-q2GoYcYIqvbAUawkpQUp9ndn_DECxyEsIMQFyeghGGGMCoIhPAKfc1N3xot-8Ca1jR6U0YmzX4PVifLL0AuX1Fb5Vvu2c6ZPqtbXordtk9gmEUknfG-Fc8uogrLSme3r2n6vQk_AQSVcMKebOgbv04f55CmdvT4-T-5mqSKM9ilSWkBpcplzDnOmBedaCqQyiTgrKoaw5jLHimiNUG4EZpIiqaGCklIlCR6Dq3Vu59uvwYS-XDVknBONaYdQIkJZnD5mR3r5jy7awTexu6gKSiBkPI_qeq3i8CF4U5Wdt7XwyzKD5Wrv5T18e_nd-zTii03kIGujd3S76AjO18AHtbv9-zj8AwdBiT8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486400795</pqid></control><display><type>article</type><title>Temperature-induced liquid crystal microdroplet formation in a partially miscible liquid mixture</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Patel, Mehzabin ; Radhakrishnan, Anand N. P ; Bescher, Ludovic ; Hunter-Sellars, Elwin ; Schmidt-Hansberg, Benjamin ; Amstad, Esther ; Ibsen, Stuart ; Guldin, Stefan</creator><creatorcontrib>Patel, Mehzabin ; Radhakrishnan, Anand N. P ; Bescher, Ludovic ; Hunter-Sellars, Elwin ; Schmidt-Hansberg, Benjamin ; Amstad, Esther ; Ibsen, Stuart ; Guldin, Stefan</creatorcontrib><description>Liquid-in-liquid droplets are typically generated by the partitioning of immiscible fluids,
e.g.
by mechanical shearing with macroscopic homogenisers or microfluidic flow focussing. In contrast, partially miscible liquids with a critical solution temperature display a temperature-dependent mixing behaviour. In this work, we demonstrate how, for a blend of methanol (MeOH) and the thermotropic liquid crystal (LC) 4-Cyano-4′-pentylbiphenyl (5CB), cooling from a miscible to an immiscible state allows the controlled formation of microdroplets. A near-room-temperature-induced phase separation leads to nucleation, growth and coalescence of mesogen-rich droplets. The size and number of the droplets is tunable on the microscopic scale by variation of temperature quench depth and cooling rate. Further cooling induces a phase transition to nematic droplets with radial configuration, well-defined sizes and stability over the course of an hour. This temperature-induced approach offers a scalable and reversible alternative to droplet formation with relevance in diagnostics, optoelectronics, materials templating and extraction processes.
We demonstrate how, for a binary blend of a thermotropic liquid crystal and methanol, cooling from a miscible to an immiscible state induces the reversible formation of microdroplets, whose size, number and mesogen orientation can be controlled by the temperature protocol.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d0sm01742f</identifier><identifier>PMID: 33284300</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Coalescence ; Coalescing ; Cooling ; Cooling rate ; Droplets ; Liquid crystals ; Microfluidics ; Miscibility ; Nucleation ; Optoelectronics ; Phase separation ; Phase transitions ; Room temperature ; Shearing ; Temperature dependence</subject><ispartof>Soft matter, 2021-01, Vol.17 (4), p.947-954</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-2cda0be5b599057da99dba2c1b2978f723d9b53c4dd225ea37b62bd0c0b66cb43</citedby><cites>FETCH-LOGICAL-c476t-2cda0be5b599057da99dba2c1b2978f723d9b53c4dd225ea37b62bd0c0b66cb43</cites><orcidid>0000-0002-7152-8553 ; 0000-0001-6527-836X ; 0000-0002-6196-321X ; 0000-0001-8619-3832 ; 0000-0002-9491-1010 ; 0000-0002-9763-8830 ; 0000-0002-4413-5527 ; 0000-0001-5644-0337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33284300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Mehzabin</creatorcontrib><creatorcontrib>Radhakrishnan, Anand N. P</creatorcontrib><creatorcontrib>Bescher, Ludovic</creatorcontrib><creatorcontrib>Hunter-Sellars, Elwin</creatorcontrib><creatorcontrib>Schmidt-Hansberg, Benjamin</creatorcontrib><creatorcontrib>Amstad, Esther</creatorcontrib><creatorcontrib>Ibsen, Stuart</creatorcontrib><creatorcontrib>Guldin, Stefan</creatorcontrib><title>Temperature-induced liquid crystal microdroplet formation in a partially miscible liquid mixture</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Liquid-in-liquid droplets are typically generated by the partitioning of immiscible fluids,
e.g.
by mechanical shearing with macroscopic homogenisers or microfluidic flow focussing. In contrast, partially miscible liquids with a critical solution temperature display a temperature-dependent mixing behaviour. In this work, we demonstrate how, for a blend of methanol (MeOH) and the thermotropic liquid crystal (LC) 4-Cyano-4′-pentylbiphenyl (5CB), cooling from a miscible to an immiscible state allows the controlled formation of microdroplets. A near-room-temperature-induced phase separation leads to nucleation, growth and coalescence of mesogen-rich droplets. The size and number of the droplets is tunable on the microscopic scale by variation of temperature quench depth and cooling rate. Further cooling induces a phase transition to nematic droplets with radial configuration, well-defined sizes and stability over the course of an hour. This temperature-induced approach offers a scalable and reversible alternative to droplet formation with relevance in diagnostics, optoelectronics, materials templating and extraction processes.
We demonstrate how, for a binary blend of a thermotropic liquid crystal and methanol, cooling from a miscible to an immiscible state induces the reversible formation of microdroplets, whose size, number and mesogen orientation can be controlled by the temperature protocol.</description><subject>Coalescence</subject><subject>Coalescing</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Droplets</subject><subject>Liquid crystals</subject><subject>Microfluidics</subject><subject>Miscibility</subject><subject>Nucleation</subject><subject>Optoelectronics</subject><subject>Phase separation</subject><subject>Phase transitions</subject><subject>Room temperature</subject><subject>Shearing</subject><subject>Temperature dependence</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLxDAQB_AgiqurF-9KwYsI1TRJk-Yoq6vCigdX8FbzKmRJHyYtuN_erPsQPE0gv_yZmQBwlsGbDGJ-q2GoYcYIqvbAUawkpQUp9ndn_DECxyEsIMQFyeghGGGMCoIhPAKfc1N3xot-8Ca1jR6U0YmzX4PVifLL0AuX1Fb5Vvu2c6ZPqtbXordtk9gmEUknfG-Fc8uogrLSme3r2n6vQk_AQSVcMKebOgbv04f55CmdvT4-T-5mqSKM9ilSWkBpcplzDnOmBedaCqQyiTgrKoaw5jLHimiNUG4EZpIiqaGCklIlCR6Dq3Vu59uvwYS-XDVknBONaYdQIkJZnD5mR3r5jy7awTexu6gKSiBkPI_qeq3i8CF4U5Wdt7XwyzKD5Wrv5T18e_nd-zTii03kIGujd3S76AjO18AHtbv9-zj8AwdBiT8</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Patel, Mehzabin</creator><creator>Radhakrishnan, Anand N. P</creator><creator>Bescher, Ludovic</creator><creator>Hunter-Sellars, Elwin</creator><creator>Schmidt-Hansberg, Benjamin</creator><creator>Amstad, Esther</creator><creator>Ibsen, Stuart</creator><creator>Guldin, Stefan</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7152-8553</orcidid><orcidid>https://orcid.org/0000-0001-6527-836X</orcidid><orcidid>https://orcid.org/0000-0002-6196-321X</orcidid><orcidid>https://orcid.org/0000-0001-8619-3832</orcidid><orcidid>https://orcid.org/0000-0002-9491-1010</orcidid><orcidid>https://orcid.org/0000-0002-9763-8830</orcidid><orcidid>https://orcid.org/0000-0002-4413-5527</orcidid><orcidid>https://orcid.org/0000-0001-5644-0337</orcidid></search><sort><creationdate>20210128</creationdate><title>Temperature-induced liquid crystal microdroplet formation in a partially miscible liquid mixture</title><author>Patel, Mehzabin ; Radhakrishnan, Anand N. P ; Bescher, Ludovic ; Hunter-Sellars, Elwin ; Schmidt-Hansberg, Benjamin ; Amstad, Esther ; Ibsen, Stuart ; Guldin, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-2cda0be5b599057da99dba2c1b2978f723d9b53c4dd225ea37b62bd0c0b66cb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coalescence</topic><topic>Coalescing</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Droplets</topic><topic>Liquid crystals</topic><topic>Microfluidics</topic><topic>Miscibility</topic><topic>Nucleation</topic><topic>Optoelectronics</topic><topic>Phase separation</topic><topic>Phase transitions</topic><topic>Room temperature</topic><topic>Shearing</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Mehzabin</creatorcontrib><creatorcontrib>Radhakrishnan, Anand N. P</creatorcontrib><creatorcontrib>Bescher, Ludovic</creatorcontrib><creatorcontrib>Hunter-Sellars, Elwin</creatorcontrib><creatorcontrib>Schmidt-Hansberg, Benjamin</creatorcontrib><creatorcontrib>Amstad, Esther</creatorcontrib><creatorcontrib>Ibsen, Stuart</creatorcontrib><creatorcontrib>Guldin, Stefan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Mehzabin</au><au>Radhakrishnan, Anand N. P</au><au>Bescher, Ludovic</au><au>Hunter-Sellars, Elwin</au><au>Schmidt-Hansberg, Benjamin</au><au>Amstad, Esther</au><au>Ibsen, Stuart</au><au>Guldin, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-induced liquid crystal microdroplet formation in a partially miscible liquid mixture</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2021-01-28</date><risdate>2021</risdate><volume>17</volume><issue>4</issue><spage>947</spage><epage>954</epage><pages>947-954</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Liquid-in-liquid droplets are typically generated by the partitioning of immiscible fluids,
e.g.
by mechanical shearing with macroscopic homogenisers or microfluidic flow focussing. In contrast, partially miscible liquids with a critical solution temperature display a temperature-dependent mixing behaviour. In this work, we demonstrate how, for a blend of methanol (MeOH) and the thermotropic liquid crystal (LC) 4-Cyano-4′-pentylbiphenyl (5CB), cooling from a miscible to an immiscible state allows the controlled formation of microdroplets. A near-room-temperature-induced phase separation leads to nucleation, growth and coalescence of mesogen-rich droplets. The size and number of the droplets is tunable on the microscopic scale by variation of temperature quench depth and cooling rate. Further cooling induces a phase transition to nematic droplets with radial configuration, well-defined sizes and stability over the course of an hour. This temperature-induced approach offers a scalable and reversible alternative to droplet formation with relevance in diagnostics, optoelectronics, materials templating and extraction processes.
We demonstrate how, for a binary blend of a thermotropic liquid crystal and methanol, cooling from a miscible to an immiscible state induces the reversible formation of microdroplets, whose size, number and mesogen orientation can be controlled by the temperature protocol.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33284300</pmid><doi>10.1039/d0sm01742f</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7152-8553</orcidid><orcidid>https://orcid.org/0000-0001-6527-836X</orcidid><orcidid>https://orcid.org/0000-0002-6196-321X</orcidid><orcidid>https://orcid.org/0000-0001-8619-3832</orcidid><orcidid>https://orcid.org/0000-0002-9491-1010</orcidid><orcidid>https://orcid.org/0000-0002-9763-8830</orcidid><orcidid>https://orcid.org/0000-0002-4413-5527</orcidid><orcidid>https://orcid.org/0000-0001-5644-0337</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2021-01, Vol.17 (4), p.947-954 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_miscellaneous_2467841057 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Coalescence Coalescing Cooling Cooling rate Droplets Liquid crystals Microfluidics Miscibility Nucleation Optoelectronics Phase separation Phase transitions Room temperature Shearing Temperature dependence |
title | Temperature-induced liquid crystal microdroplet formation in a partially miscible liquid mixture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A10%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-induced%20liquid%20crystal%20microdroplet%20formation%20in%20a%20partially%20miscible%20liquid%20mixture&rft.jtitle=Soft%20matter&rft.au=Patel,%20Mehzabin&rft.date=2021-01-28&rft.volume=17&rft.issue=4&rft.spage=947&rft.epage=954&rft.pages=947-954&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d0sm01742f&rft_dat=%3Cproquest_pubme%3E2467841057%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486400795&rft_id=info:pmid/33284300&rfr_iscdi=true |