Temperature-induced liquid crystal microdroplet formation in a partially miscible liquid mixture

Liquid-in-liquid droplets are typically generated by the partitioning of immiscible fluids, e.g. by mechanical shearing with macroscopic homogenisers or microfluidic flow focussing. In contrast, partially miscible liquids with a critical solution temperature display a temperature-dependent mixing be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2021-01, Vol.17 (4), p.947-954
Hauptverfasser: Patel, Mehzabin, Radhakrishnan, Anand N. P, Bescher, Ludovic, Hunter-Sellars, Elwin, Schmidt-Hansberg, Benjamin, Amstad, Esther, Ibsen, Stuart, Guldin, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liquid-in-liquid droplets are typically generated by the partitioning of immiscible fluids, e.g. by mechanical shearing with macroscopic homogenisers or microfluidic flow focussing. In contrast, partially miscible liquids with a critical solution temperature display a temperature-dependent mixing behaviour. In this work, we demonstrate how, for a blend of methanol (MeOH) and the thermotropic liquid crystal (LC) 4-Cyano-4′-pentylbiphenyl (5CB), cooling from a miscible to an immiscible state allows the controlled formation of microdroplets. A near-room-temperature-induced phase separation leads to nucleation, growth and coalescence of mesogen-rich droplets. The size and number of the droplets is tunable on the microscopic scale by variation of temperature quench depth and cooling rate. Further cooling induces a phase transition to nematic droplets with radial configuration, well-defined sizes and stability over the course of an hour. This temperature-induced approach offers a scalable and reversible alternative to droplet formation with relevance in diagnostics, optoelectronics, materials templating and extraction processes. We demonstrate how, for a binary blend of a thermotropic liquid crystal and methanol, cooling from a miscible to an immiscible state induces the reversible formation of microdroplets, whose size, number and mesogen orientation can be controlled by the temperature protocol.
ISSN:1744-683X
1744-6848
DOI:10.1039/d0sm01742f