miR-127-3p Is an Epigenetic Activator of Myofibroblast Senescence Situated within the MicroRNA-Enriched Dlk1-Dio3‒Imprinted Domain on Mouse Chromosome 12

During wound healing, fibroblasts differentiate into nonproliferative contractile myofibroblasts, contribute to skin repair, and eventually undergo apoptosis or become senescent. MicroRNAs are post-transcriptional regulators of gene expression networks that control cell fate and survival and may als...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of investigative dermatology 2021-04, Vol.141 (4), p.1076-1086.e3
Hauptverfasser: Auler, Markus, Bergmeier, Vera, Georgieva, Veronika S., Pitzler, Lena, Frie, Christian, Nüchel, Julian, Eckes, Beate, Hinz, Boris, Brachvogel, Bent
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During wound healing, fibroblasts differentiate into nonproliferative contractile myofibroblasts, contribute to skin repair, and eventually undergo apoptosis or become senescent. MicroRNAs are post-transcriptional regulators of gene expression networks that control cell fate and survival and may also regulate senescence. In this study, we determined the regulated microRNAs in myofibroblasts isolated from wounds and analyzed their role in senescent myofibroblast formation. Transcriptome profiling showed that a 200 kilobase pair region of the Dlk1-Dio3‒imprinted domain on mouse chromosome 12 encodes for most of the upregulated microRNAs in the entire genome of mouse myofibroblasts. Among those, miR-127-3p induced a myofibroblast-like phenotype associated with a block in proliferation. Molecular analysis revealed that miR-127-3p induced a prolonged cell cycle arrest with unique molecular features of senescence, including the activation of the senescence-associated β-galactosidase, increase in p53 and p21 levels, inhibition of lamin B1, proliferation factors, and the production of senescence-associated inflammatory and extracellular matrix‒remodeling components. Hence, miR-127-3p emerges as an epigenetic activator regulating the transition from repair to remodeling during skin wound healing but may also induce age-related defects, pathological scarring, and fibrosis, all linked to myofibroblast senescence.
ISSN:0022-202X
1523-1747
DOI:10.1016/j.jid.2020.11.011