Mechanisms of collision recovery in flying beetles and flapping-wing robots

At rest, beetles fold and tuck their hindwings under the elytra. For flight, the hindwings are deployed through a series of unfolding configurations that are passively driven by flapping forces. The folds lock into place as the wing fully unfolds and thereafter operates as a flat membrane to generat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-12, Vol.370 (6521), p.1214-1219
Hauptverfasser: Phan, Hoang Vu, Park, Hoon Cheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At rest, beetles fold and tuck their hindwings under the elytra. For flight, the hindwings are deployed through a series of unfolding configurations that are passively driven by flapping forces. The folds lock into place as the wing fully unfolds and thereafter operates as a flat membrane to generate the aerodynamic forces. We show that in the rhinoceros beetle ( ), these origami-like folds serve a crucial shock-absorbing function during in-flight wing collisions. When the wing collides with an object, it collapses along the folds and springs back in place within a single stroke. Collisions are thus dampened, helping the beetle to promptly recover the flight. We implemented this mechanism on a beetle-inspired wing on a flapping-wing robot, thereby enabling it to fly safely after collisions.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.abd3285