Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice
Low temperature is a major environmental factor that limits plant growth and productivity. Although transient elevation of cytoplasmic calcium has long been recognized as a critical signal for plant cold tolerance, the calcium channels responsible for this process have remained largely elusive. Here...
Gespeichert in:
Veröffentlicht in: | Molecular plant 2021-02, Vol.14 (2), p.315-329 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low temperature is a major environmental factor that limits plant growth and productivity. Although transient elevation of cytoplasmic calcium has long been recognized as a critical signal for plant cold tolerance, the calcium channels responsible for this process have remained largely elusive. Here we report that OsCNGC9, a cyclic nucleotide-gated channel, positively regulates chilling tolerance by mediating cytoplasmic calcium elevation in rice (Oryza sativa). We showed that the loss-of-function mutant of OsCNGC9 is defective in cold-induced calcium influx and more sensitive to prolonged cold treatment, whereas OsCNGC9 overexpression confers enhanced cold tolerance. Mechanistically, we demonstrated that in response to chilling stress, OsSAPK8, a homolog of Arabidopsis thaliana OST1, phosphorylates and activates OsCNGC9 to trigger Ca2+ influx. Moreover, we found that the transcription of OsCNGC9 is activated by a rice dehydration-responsive element-binding transcription factor, OsDREB1A. Taken together, our results suggest that OsCNGC9 enhances chilling tolerance in rice through regulating cold-induced calcium influx and cytoplasmic calcium elevation.
Upon cold shock, the cyclic nucleotide-gated channel OsCNGC9 is phosphorylated and activated by the SnRK2 protein kinase OsSAPK8, triggering an increase in cytosolic calcium levels, which in turn activates the expression of cold stress-related genes and enhances cold tolerance in rice. |
---|---|
ISSN: | 1674-2052 1752-9867 |
DOI: | 10.1016/j.molp.2020.11.022 |