Evolution of in vivo dopamine monitoring techniques
The brain dopamine system is central to numerous behavioral processes, including movement, learning, and motivation. Accordingly, disruptions of this neural system underlie numerous neurological and psychiatric disorders. Current understanding of how dopamine neurotransmission contributes to behavio...
Gespeichert in:
Veröffentlicht in: | Pharmacology, biochemistry and behavior biochemistry and behavior, 2021-01, Vol.200, p.173078-173078, Article 173078 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The brain dopamine system is central to numerous behavioral processes, including movement, learning, and motivation. Accordingly, disruptions of this neural system underlie numerous neurological and psychiatric disorders. Current understanding of how dopamine neurotransmission contributes to behavior and its dysfunction has been driven by technological advancements that permit spatiotemporally-defined measurements of dopaminergic signaling in behaving animals. In this review, we will discuss the evolution of in vivo neural monitoring technologies for measuring dopamine neuron function. We focus on the dopamine system for two reasons: (1) the central role of dopamine neurotransmission in normal behavior and disease, and (2) dopamine neuron measurements have long been at the forefront of in vivo neural monitoring technologies. We will provide a brief overview of standard techniques for monitoring dopamine function, including electrophysiology, microdialysis, and voltammetry. Then, we will discuss recent advancements in optical technologies using genetically-encoded fluorescent proteins (GEFPs), including a critical evaluation of their advantages and limitations.
•The brain dopamine system is central to adaptive behavior and its dysfunction.•Understanding of dopamine function is driven by in vivo neural monitoring techniques.•Recent advances in optical techniques are greatly expanding this understanding. |
---|---|
ISSN: | 0091-3057 1873-5177 |
DOI: | 10.1016/j.pbb.2020.173078 |