Development of Gold Nanorods Conjugated with Radiolabeled Anti-human Epidermal Growth Factor Receptor 2 (HER2) Monoclonal Antibody as Single-Photon Emission Computed Tomography/Photoacoustic Dual-Imaging Probes Targeting HER2-Positive Tumors

Surgery remains one of the main treatments of cancer and both precise pre- and intraoperative diagnoses are crucial in order to guide the operation. We consider that using an identical probe for both pre- and intra-operative diagnoses would bridge the gap between surgical planning and image-guided r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological & pharmaceutical bulletin 2020/12/01, Vol.43(12), pp.1859-1866
Hauptverfasser: Ding, Ning, Sano, Kohei, Shimizu, Yoichi, Watanabe, Hiroyuki, Namita, Takeshi, Shiina, Tsuyoshi, Ono, Masahiro, Saji, Hideo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surgery remains one of the main treatments of cancer and both precise pre- and intraoperative diagnoses are crucial in order to guide the operation. We consider that using an identical probe for both pre- and intra-operative diagnoses would bridge the gap between surgical planning and image-guided resection. Therefore, in this study, we developed gold nanorods (AuNRs) conjugated with radiolabeled anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody, and investigated their feasibility as novel HER2-targeted dual-imaging probes for both single photon emission computed tomography (SPECT) (preoperative diagnosis) and photoacoustic (PA) imaging (intraoperative diagnosis). To achieve the purpose, AuNRs conjugated with different amount of trastuzumab (Tra) were prepared, and Tra-AuNRs were labeled with indium-111. After the evaluation of binding affinity to HER2, cell binding assay and biodistribution studies were carried out for optimization. AuNRs with moderate trastuzumab conjugation (Tra2-AuNRs) were proposed as the novel probe and demonstrated significantly higher accumulation in NCI-N87 (HER2 high-expression) tumors than in SUIT2 (low-expression) tumors 96 h post-injection along with good affinity towards HER2. Thereafter, in vitro PA imaging and in vivo SPECT imaging studies were performed. In in vitro PA imaging, Tra2-AuNRs-treated N87 cells exhibited significant PA signal increase than SUIT2 cells. In in vivo SPECT, signal increase in N87 tumors was more notable than that in SUIT2 tumors. Herein, we report that the Tra2-AuNRs enabled HER2-specific imaging, suggesting the potential as a robust HER2-targeted SPECT and PA dual-imaging probe.
ISSN:0918-6158
1347-5215
DOI:10.1248/bpb.b20-00385