A Brush–Spin–Coating Method for Fabricating In Vitro Patient-Specific Vascular Models by Coupling 3D-Printing
Purpose In vitro patient-specific flexible vascular models are helpful for understanding the haemodynamic changes before and after endovascular treatment and for effective training of neuroendovascular interventionalists. However, it is difficult to fabricate models of overall unified or controllabl...
Gespeichert in:
Veröffentlicht in: | Cardiovascular engineering and technology 2021-04, Vol.12 (2), p.200-214 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
In vitro
patient-specific flexible vascular models are helpful for understanding the haemodynamic changes before and after endovascular treatment and for effective training of neuroendovascular interventionalists. However, it is difficult to fabricate models of overall unified or controllable thickness using existing manufacturing methods. In this study, we developed an improved and easily implemented method by combining 3D printing and brush-spin–coating processes to produce a transparent silicone model of uniform or varied thickness.
Methods
First, a water-soluble inner-skeleton model, based on clinical data, was printed on a 3D printer. The skeleton model was subsequently fixed in a single-axis-rotation machine to enable continuous coating of silicone, the thickness of which was manually controlled by adsorption and removal of excess silicone in a brush-spinning operation. After the silicone layer was solidified, the inner skeleton was further dissolved in a hot water bath, affording a transparent vascular model with real geometry. To verify the controllability of the coating thickness by using this method, a straight tube, an idealised aneurysm model, a patient-specific aortic arch model, and an abdominal aortic aneurysm model were manufactured.
Results
The different thicknesses of the manufactured tubes could be well controlled, with the relative standard deviations being 5.6 and 8.1% for the straight and aneurysm tubes, respectively. Despite of the diameter changing from 33 to 20 mm in the patient-specific aorta, the thickness of the fabricated aortic model remains almost the same along the longitudinal direction with a lower standard deviation of 3.1%. In the more complex patient-specific abdominal aneurysm model, varied thicknesses were realized to mimic the measured data from the CT images, where the middle of the aneurysm was with 2 mm and abdominal aorta as well as the iliac arteries had the normal thickness of 2.3 mm.
Conclusion
Through the brush–spin–coating method, models of different sizes and complexity with prescribed thickness can be manufactured, which will be helpful for developing surgical treatment strategies or training neuroendovascular interventionalists. |
---|---|
ISSN: | 1869-408X 1869-4098 |
DOI: | 10.1007/s13239-020-00504-9 |