The Assessment of Skeletal Muscle and Cortical Bone by Second-generation HR-pQCT at the Tibial Midshaft

Background: Peripheral quantitative computed tomography (pQCT) is the current densitometric gold-standard for assessing skeletal muscle at the 66% proximal tibia site. High resolution peripheral quantitative computed tomography (HR-pQCT) is a leading technology for quantifying bone microarchitecture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical densitometry 2021-07, Vol.24 (3), p.465-473
Hauptverfasser: Hildebrand, Kurt N, Sidhu, Karamjot, Gabel, Leigh, Besler, Bryce A, Burt, Lauren A, Boyd, Steven K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Peripheral quantitative computed tomography (pQCT) is the current densitometric gold-standard for assessing skeletal muscle at the 66% proximal tibia site. High resolution peripheral quantitative computed tomography (HR-pQCT) is a leading technology for quantifying bone microarchitecture at the distal extremities, and with the second-generation HR-pQCT it is possible to measure proximal limb sites. Therefore, the objectives of this study were to: (1) assess the feasibility of using HR-pQCT to assess skeletal muscle parameters at the 66% proximal tibia site, and (2) test HR-pQCT skeletal muscle measurement reproducibility at this site. Methods: Adult participants (9 males; 7 females; ages 31–75) received 1 pQCT scan and 2 HR-pQCT scans at the 66% proximal site of the nondominant tibia. Participants were repositioned between HR-pQCT scans to test reproducibility. HR-pQCT and pQCT scans were analyzed to quantify muscle cross-sectional area (CSA) and muscle density. Coefficients of determination and Bland-Altman plots compared muscle parameters between pQCT and HR-pQCT. For short-term reproducibility, root-mean-square of coefficient of variance and least significant change were calculated. Results: HR-pQCT and pQCT measured muscle density and muscle CSA were positively correlated (R2 = 0.66, R2 = 0.95, p < 0.001, respectively). Muscle density was equivalent between HR-pQCT and pQCT; however, there was systematic and directional bias for muscle CSA, such that muscle CSA was 11% lower with HR-pQCT and bias increased with larger muscle CSA. Root-mean-square of coefficient of variance was 0.67% and 0.92% for HR-pQCT measured muscle density and muscle CSA, respectively, while least significant change was 1.4 mg/cm3 and 174.0 mm2 for muscle density and muscle CSA, respectively. Conclusion: HR-pQCT is capable of assessing skeletal muscle at the 66% site of the tibia with good precision. Measures of muscle density are comparable between HR-pQCT and pQCT.
ISSN:1094-6950
1559-0747
DOI:10.1016/j.jocd.2020.11.001