Fabrication of claviform fluorescent polymeric nanomaterials containing disulfide bond through an efficient and facile four-component Ugi reaction
Multicomponent reactions (MCRs) have attracted broad interest for preparation of functional nanomaterials especially for the synthesis of functional polymers. Herein, we utilized an “old” MCR, the four-component Ugi reaction, to synthesize disulfide bond containing poly(PEG-TPE-DTDPA) amphiphilic co...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering C 2021-01, Vol.118, p.111437-111437, Article 111437 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multicomponent reactions (MCRs) have attracted broad interest for preparation of functional nanomaterials especially for the synthesis of functional polymers. Herein, we utilized an “old” MCR, the four-component Ugi reaction, to synthesize disulfide bond containing poly(PEG-TPE-DTDPA) amphiphilic copolymers with aggregation-induced emission (AIE) feature. This four-component Ugi reaction was carried out under rather mild reaction conditions, such as room temperature, no gas protection and absent of catalysts. The amphiphilic poly(PEG-TPE-DTDPA) copolymers with high number-average molecular weight (up to 86,440 Da) can self-assemble into claviform fluorescent polymeric nanoparticles (FPNs) in aqueous solution, and these water-dispersed nanoparticles exhibited strong emission, large Stokes shift (142 nm), low toxicity and remarkable ability in cellular imaging. Moreover, owing to the introduction of 3,3′-dithiodipropionic acid with disulfide bond, the resultant AIE-active poly(PEG-TPE-DTDPA) could display reduction-responsiveness and be utilized for synthesis of photothermal agents in-situ. Therefore, the AIE-active poly(PEG-TPE-DTDPA) could be promising for controlled intracellular delivery of biological activity molecules and fabrication of multifunctional AIE-active materials. Therefore, these novel AIE-active polymeric nanoparticles could be of great potential for various biomedical applications, such as biological imaging, stimuli-responsive drug delivery and theranostic applications.
[Display omitted]
•Aggregation-induced emission (AIE) copolymers are synthesized through Ugi reaction.•The AIE-active copolymers could self-assemble into claviform nanoparticles.•The fluorescent nanoparticles contain redox-responsive disulfide bond.•These fluorescent nanoparticles are potentially utilized for fabrication multifunctional theranostics. |
---|---|
ISSN: | 0928-4931 1873-0191 |
DOI: | 10.1016/j.msec.2020.111437 |