Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples: A review

Polycyclic aromatic hydrocarbons are hazardous environmental pollutants that possess mutagenic and carcinogenic properties. Generally, the concentrations of PAHs in environmental water samples are very low, and it is challenging to detect such levels directly by the analytical instrumentation. Thus,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2021-01, Vol.1141, p.246-262
Hauptverfasser: Sajid, Muhammad, Nazal, Mazen Khaled, Ihsanullah, Ihsanullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polycyclic aromatic hydrocarbons are hazardous environmental pollutants that possess mutagenic and carcinogenic properties. Generally, the concentrations of PAHs in environmental water samples are very low, and it is challenging to detect such levels directly by the analytical instrumentation. Thus, the extraction of PAHs using suitable extraction methodology is required for sample cleanup and analyte enrichment. Dispersive solid-phase extraction has several advantages over conventional approaches for the extraction of PAHs from environmental water samples. In this article, we critically evaluate the role of different nano and micro sorbent materials employed in the extraction of PAHs. Carbon-based nanomaterials, metal-organic frameworks, polymeric nanocomposites, ionic-liquid based composites, and silica-based materials are explicitly covered. This review also provides insight on functional components of all types of sorbents and their way of interaction with PAHs. The factors affecting the dispersive (micro) solid phase extraction of PAHs such as the design of the sorbent, the ratio of functional material to magnetic core, sample volume, amount of sorbent, extraction and desorption times, desorption solvent and its volume, salt addition, and sample pH are critically appraised. Finally, a brief account on the accomplishments, limitations, and challenges associated with such methods is provided. [Display omitted] •M/DSPE based analytical methods for the analysis of PAHs in aqueous media.•New sorbent media and its role in the extraction of PAHs.•A critical overview of the parameters affecting the performance of M/DSPE.•A search for analytical methods that may have applicability in routine analysis.
ISSN:0003-2670
1873-4324
DOI:10.1016/j.aca.2020.07.064