N-acetylcysteine protects ovarian follicles from ischemia-reperfusion injury in xenotransplanted human ovarian tissue

Abstract STUDY QUESTION Can antioxidant treatment with N-acetylcysteine (NAC) protect ovarian follicles from ischemia-reperfusion injury in xenotransplanted human ovarian tissue? SUMMARY ANSWER Daily administration of NAC for 7–12 days post-transplantation reduced ischemia-reperfusion injury and inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human reproduction (Oxford) 2021-01, Vol.36 (2), p.429-443
Hauptverfasser: Olesen, Hanna Ørnes, Pors, Susanne Elisabeth, Jensen, Lea Bejstrup, Grønning, Annika Patricia, Lemser, Camilla Engel, Nguyen Heimbürger, Maria Thai Hien, Mamsen, Linn Salto, Getreu, Natalie, Christensen, Søren Tvorup, Andersen, Claus Yding, Kristensen, Stine Gry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract STUDY QUESTION Can antioxidant treatment with N-acetylcysteine (NAC) protect ovarian follicles from ischemia-reperfusion injury in xenotransplanted human ovarian tissue? SUMMARY ANSWER Daily administration of NAC for 7–12 days post-transplantation reduced ischemia-reperfusion injury and increased follicle survival in human ovarian xenografts by upregulating the antioxidant defense system and exerting anti-inflammatory and antiapoptotic effects. WHAT IS KNOWN ALREADY Freezing of human ovarian tissue is performed with high follicular survival rates but up to 70% of follicles appear to be lost due to hypoxia and ischemia-reperfusion injury during ovarian tissue transplantation (OTT). NAC has been demonstrated to possess antioxidant and antiapoptotic properties, and studies in rodents have shown that intraperitoneal administration of NAC reduces ischemia-reperfusion injury and increases follicle survival in autotransplanted murine ovaries. STUDY DESIGN, SIZE, DURATION Pieces of frozen-thawed human ovarian tissue from 28 women aged 23–36 years were transplanted to immunodeficient mice in short- and long-term xenograft studies or cultured in vitro. Three short-term xenograft studies (1-week duration) were performed, in which saline or 150 mg/kg NAC was administered for 7 days post-transplantation (n = 12 patients per group). Two long-term xenograft studies (4 weeks of duration) were performed. In one of these studies, saline or 150 mg/kg NAC was administered for 12 days (n = 12 patients per group), while in the other study 50, 150 or 300 mg/kg NAC was administered for 7 days (n = 8 patients per group). In addition, human ovarian tissue (n = 12 pieces from three patients per group) was cultured with increasing concentrations of NAC (0, 5, 25 and 75 mM) for 4 days in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS Donated ovarian tissue was obtained from women who had undergone ovarian tissue cryopreservation for fertility preservation at the University Hospital of Copenhagen. Cortical tissue pieces (5 × 5 × 1 mm) were transplanted subcutaneously to immunodeficient mice and NAC or saline was injected intraperitoneally. Grafts were retrieved after 1 or 4 weeks and follicle density was assessed. Gene expression analysis of antioxidant defense markers (superoxide dismutase; Sod1/SOD1, heme oxygenase-1; Hmox1/HMOX1, catalase; Cat/CAT), proinflammatory cytokines (tumor necrosis factor-alpha; Tnf-α, interleukin-1-beta; Il1-β, interleukin 6; Il6), apoptotic fact
ISSN:0268-1161
1460-2350
DOI:10.1093/humrep/deaa291