Suppression of miR-4463 promotes phenotypic switching in VSMCs treated with Ox-LDL

Vascular smooth muscle cell (VSMC) phenotypic switching is a hallmark of vascular remodeling that contributes to atherosclerotic diseases. MicroRNA 4463 (miR-4463) has been implicated in the development of arteriosclerosis obliterans, whereas the underlying mechanisms in VSMCs have not been fully ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell and tissue research 2021-03, Vol.383 (3), p.1155-1165
Hauptverfasser: Wang, Xueqin, Li, Hui, Zhang, Yuetian, Liu, Qi, Sun, Xiaolei, He, Xuemei, Yang, Qian, Yuan, Ping, Zhou, Xiangyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vascular smooth muscle cell (VSMC) phenotypic switching is a hallmark of vascular remodeling that contributes to atherosclerotic diseases. MicroRNA 4463 (miR-4463) has been implicated in the development of arteriosclerosis obliterans, whereas the underlying mechanisms in VSMCs have not been fully addressed. In this study, we assessed whether miR-4463 is involved in the phenotypic switching process in VSMCs. Oxidized low-density lipoprotein (Ox-LDL, 50 mg/L) was used to simulate the oxidative stress condition, and miR-4463 expression in VSMCs was detected by a quantitative polymerase chain reaction. To determine the effect of Ox-LDL-mediated regulation of miR-4463 on the phenotypic switching of VSMCs, cell counting kit-8, cell migration assays, and cytoskeleton test were performed. After using specific antagonists of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), the relationship between miR-4463 and its downstream signaling proteins was explored. Ox-LDL induced oxidative stress to promote VSMC transformation from contraction to secretion, which clearly decreased the level of miR-4463. Then, downregulated miR-4463 enhanced the migration and phenotypic transformation of VSMCs and activated the phosphorylation of JNK and ERK; these effects were increased after Ox-LDL induction. As expected, inhibiting the two signaling proteins blocked the effect of the miR-4463 inhibitor combined with Ox-LDL. In addition, inhibition of miR-4463 led to the upregulation of basic fibroblast growth factor (bFGF) expression. The results of this study demonstrate that miR-4463 is a novel regulator of VSMC function in hypoxic conditions and modulates VSMC phenotypic switching via the JNK and ERK signaling pathways; bFGF may be the target gene of miR-4463.
ISSN:0302-766X
1432-0878
DOI:10.1007/s00441-020-03338-y