Kirigami-Inspired Flexible and Stretchable Zinc–Air Battery Based on Metal-Coated Sponge Electrodes

The development of efficient and low-cost flexible metal electrodes is significant for flexible rechargeable zinc–air batteries (ZABs). Herein, we reported a new type of flexible metal (zinc and nickel) electrode fabricated via a two-step deposition method on polyurethane sponges (PUS) for flexible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-12, Vol.12 (49), p.54833-54841
Hauptverfasser: Qu, Shengxiang, Liu, Bin, Wu, Jingkun, Zhao, Zequan, Liu, Jie, Ding, Jia, Han, Xiaopeng, Deng, Yida, Zhong, Cheng, Hu, Wenbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of efficient and low-cost flexible metal electrodes is significant for flexible rechargeable zinc–air batteries (ZABs). Herein, we reported a new type of flexible metal (zinc and nickel) electrode fabricated via a two-step deposition method on polyurethane sponges (PUS) for flexible ZABs. Compared to conventional electrodes, the metal-coated PUS electrodes exhibited great flexibility, softness, and natural mechanical resilience. In addition, a flexible sandwich-structured ZAB was assembled with the metal-coated PUS electrodes and in situ cross-linked polyacrylic acid (PAA)–KOH hydrogel electrolyte. The flexible ZAB presented stable discharge/charge performance even under complex rolling and twisting deformations. Moreover, inspired by the kirigami-strategy for device-level stretchability, a 100% stretchable fence-shaped ZAB and a 160% stretchable serpentine-shaped ZAB were cut from the above-mentioned flexible ZABs. The kirigami-inspired configuration enabled the battery performance to be stable during stretching, benefiting from the softness of the PUS@metal electrode. These flexible and stretchable ZABs would broaden the promising applications for portable and wearable energy storage devices.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c17479