Kirigami-Inspired Flexible and Stretchable Zinc–Air Battery Based on Metal-Coated Sponge Electrodes
The development of efficient and low-cost flexible metal electrodes is significant for flexible rechargeable zinc–air batteries (ZABs). Herein, we reported a new type of flexible metal (zinc and nickel) electrode fabricated via a two-step deposition method on polyurethane sponges (PUS) for flexible...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-12, Vol.12 (49), p.54833-54841 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of efficient and low-cost flexible metal electrodes is significant for flexible rechargeable zinc–air batteries (ZABs). Herein, we reported a new type of flexible metal (zinc and nickel) electrode fabricated via a two-step deposition method on polyurethane sponges (PUS) for flexible ZABs. Compared to conventional electrodes, the metal-coated PUS electrodes exhibited great flexibility, softness, and natural mechanical resilience. In addition, a flexible sandwich-structured ZAB was assembled with the metal-coated PUS electrodes and in situ cross-linked polyacrylic acid (PAA)–KOH hydrogel electrolyte. The flexible ZAB presented stable discharge/charge performance even under complex rolling and twisting deformations. Moreover, inspired by the kirigami-strategy for device-level stretchability, a 100% stretchable fence-shaped ZAB and a 160% stretchable serpentine-shaped ZAB were cut from the above-mentioned flexible ZABs. The kirigami-inspired configuration enabled the battery performance to be stable during stretching, benefiting from the softness of the PUS@metal electrode. These flexible and stretchable ZABs would broaden the promising applications for portable and wearable energy storage devices. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c17479 |