SDF Factor-1α Promotes the Migration, Proliferation, and Osteogenic Differentiation of Mouse Bone Marrow Mesenchymal Stem Cells Through the Wnt/β-Catenin Pathway
Bone marrow mesenchymal stem cells (BMSCs) are thought to have great potential in the treatment of many diseases and may serve as a cell source for tissue engineering. These cells may be regulated by stromal cell-derived factor-1α (SDF-1α), which has been shown to promote the migration, proliferatio...
Gespeichert in:
Veröffentlicht in: | Stem cells and development 2021-01, Vol.30 (2), p.16-117 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bone marrow mesenchymal stem cells (BMSCs) are thought to have great potential in the treatment of many diseases and may serve as a cell source for tissue engineering. These cells may be regulated by stromal cell-derived factor-1α (SDF-1α), which has been shown to promote the migration, proliferation, and osteogenic differentiation of BMSCs in inflammation-associated diseases. However, the specific mechanism underlying this process remains unclear. We herein transduced lentivirus carrying SDF-1α, empty vector, or siRNA-SDF-1α into mouse BMSCs and then performed transwell, CCK-8, cell cycle, alkaline phosphatase activity, and Alizarin Red staining experiments on the three groups of samples. Overexpression of SDF-1α promoted the migration, proliferation, and osteogenic differentiation of BMSCs, and SDF-1α upregulated the expression of Wnt pathway-related factors and downstream target genes as determined by western blot, real-time polymerase chain reaction, and immunofluorescence. The effect of low SDF-1α expression on BMSCs was significantly weakened. In addition, we transduced lentivirus carrying siRNA-Wnt3a into BMSCs and treated them with SDF-1 drugs. After inhibiting the Wnt pathway, SDF-1 significantly weakened the migration, proliferation, and osteogenic differentiation of BMSCs. From this, we concluded that high SDF-1 expression can promote the migration, proliferation, and osteogenic differentiation of BMSCs, at least in part by activating the Wnt pathway. |
---|---|
ISSN: | 1547-3287 1557-8534 |
DOI: | 10.1089/scd.2020.0165 |