Imaging and Targeted Antibacterial Therapy Using Chimeric Antimicrobial Peptide Micelles
Infectious diseases induced by multidrug-resistant bacteria are a challenging problem in medicine because of global rise in the drug resistance to pathogenic bacteria. Despite great efforts on the development of antibiotics and antimicrobial agents, there is still a great need to develop a strategy...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-12, Vol.12 (49), p.54306-54315 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Infectious diseases induced by multidrug-resistant bacteria are a challenging problem in medicine because of global rise in the drug resistance to pathogenic bacteria. Despite great efforts on the development of antibiotics and antimicrobial agents, there is still a great need to develop a strategy to early detect bacterial infections and eradicate bacteria effectively and simultaneously. The innate immune systems of various organisms produce antimicrobial peptides, which kill a broad range of bacteria with minimal cytotoxicity to mammalian cells. Therefore, antimicrobial peptides have recently attracted increasing attention as an alternative to conventional antibiotics in antibacterial medications. Here, we report a new family of antibacterial agents, which is formulated from self-assembly of a chimeric antimicrobial lipopeptide (DSPE-HnMc) and amphiphilic biodegradable polymers. HnMc micelles could effectively bind the bacterial membrane to kill a wide spectrum of bacteria and bacterial biofilms. In the studies of mouse models of drug-resistant bacterial infections, HnMc micelles could target bacterial infections with high specificity and also kill drug-resistant bacteria effectively, demonstrating the great potential of HnMc micelles as imaging and targeted antibacterial agents. These findings also provide new insight into the design of antimicrobial peptide-based nanomedicine for detection and treatment of bacterial infections. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c13083 |