Phospholipid analysis in whey protein products using hydrophilic interaction high-performance liquid chromatography-evaporative light-scattering detection in an industry setting

The main objective of this work was to develop an analytical method that can be used in a dairy manufacturing facility for the quantitation of phospholipids in dairy products. Total lipids from a dairy matrix were obtained first by Folch extraction. The total lipid extract was then applied to a sili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dairy science 2020-12, Vol.103 (12), p.11079-11085
Hauptverfasser: Ferraris, Quintin, Hale, Joseph, Teigland, Elizabeth, Rao, Anand, Qian, Michael C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main objective of this work was to develop an analytical method that can be used in a dairy manufacturing facility for the quantitation of phospholipids in dairy products. Total lipids from a dairy matrix were obtained first by Folch extraction. The total lipid extract was then applied to a silica gel-based solid-phase extraction column, and triglycerides and other nonpolar lipids were separated from the phospholipids and sphingolipids. Quantitation was performed by hydrophilic interaction HPLC coupled to evaporative light-scattering detection using a quaternary separation method. The method was validated using a commercial whey protein phospholipid concentrate and was used to analyze phospholipid and sphingolipid composition in buttermilk, whey protein concentrate, whey protein phospholipid concentrate, and several other dairy ingredients. This method was sensitive and reproducible and can be used in the dairy industry as a research tool to develop new value-added dairy phospholipid products, then later as a standard protocol for quality assurance analysis of current and future products.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2020-18687