A comparison of alendronate to varying magnitude PEMF in mitigating bone loss and altering bone remodeling in skeletally mature osteoporotic rats

Pulsed electromagnetic field (PEMF) treatments stimulate bone formation activities though further work is needed to optimize its therapeutic benefit. PEMF can generate local potential gradients and electric currents that have been suggested to mimic bone electrochemical responses to load. In line wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bone (New York, N.Y.) N.Y.), 2021-02, Vol.143, p.115761-115761, Article 115761
Hauptverfasser: Androjna, Caroline, Yee, Cristal S., White, Carter R., Waldorff, Erik I., Ryaby, James T., Zborowski, Maciej, Alliston, Tamara, Midura, Ronald J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pulsed electromagnetic field (PEMF) treatments stimulate bone formation activities though further work is needed to optimize its therapeutic benefit. PEMF can generate local potential gradients and electric currents that have been suggested to mimic bone electrochemical responses to load. In line with this reasoning, a recent publication reported that PEMF application on isolated bone tissue induced detectable micro-vibrations (doi:https://doi.org/10.1109/TMAG.2016.2515069). To determine the ability of PEMF to intervene in a rat model of osteoporosis, we tested its effect on trabecular and cortical bone following ovariectomy. Four PEMF treatments, with increasing sinusoidal amplitude rise with time (3850 Hz pulse frequency and 15 Hz repetition rate at 10 tesla/sec (T/s), 30 T/s, 100 T/s, or 300 T/s), were compared to the efficacy of an osteoporosis drug, alendronate, in reducing levels of trabecular bone loss in the proximal tibia. Herein, the novel findings from our study are: (1) 30 T/s PEMF treatment approached the efficacy of alendronate in reducing trabecular bone loss, but differed from it by not reducing bone formation rates; and (2) 30 T/s and 100 T/s PEMF treatments imparted measurable alterations in lacunocanalicular features in cortical bone, consistent with osteocyte sensitivity to PEMF in vivo. The efficacy of specific PEMF doses may relate to their ability to modulate osteocyte function such that the 30 T/s, and to a lesser extent 100 T/s, doses preferentially antagonize trabecular bone resorption while stimulating bone formation. Thus, PEMF treatments of specific magnetic field magnitudes exert a range of measurable biological effects in trabecular and cortical bone tissue in osteoporotic rats. •Select pulsed electromagnetic field (PEMF) treatments reduced trabecular bone loss in a rat osteoporosis model.•The extent of the best-performing PEMF’s mitigation of trabecular bone loss approached that of alendronate treatment.•Mechanisms of mitigating trabecular bone loss for alendronate versus the best-performing PEMF are not identical.•Osteocyte lacunar size and canalicular length surrounding osteocytes in vivo are altered by select PEMF treatments.
ISSN:8756-3282
1873-2763
DOI:10.1016/j.bone.2020.115761