Color-Tunable and ESIPT-Inspired Solid Fluorophores Based on Benzothiazole Derivatives: Aggregation-Induced Emission, Strong Solvatochromic Effect, and White Light Emission
Organic solid materials with color-tunable emissions have been extensively applied in various fields. However, a rational design and facile synthesis of an ideal fluorophore are still challenging due to the undesirable aggregation-caused quenching effect in concentrated solution and solid form. Here...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-12, Vol.12 (49), p.55094-55106 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organic solid materials with color-tunable emissions have been extensively applied in various fields. However, a rational design and facile synthesis of an ideal fluorophore are still challenging due to the undesirable aggregation-caused quenching effect in concentrated solution and solid form. Herein, we have developed a series of 2-(2′-hydroxyphenyl)benzothiazole (HBT)-derived color-tunable solid emitters by switching functional groups at the ortho-position of a hydroxyl group via formylation and an aldol condensation reaction. By tuning the electron-withdrawing ability and the π-conjugated framework introduced by the functional groups, fluorophores emit light covering the full-color range from blue to near-infrared regions with high quantum yields in their solid form and show a significant solvatochromic effect in polar solvents. The aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) and excited-state intramolecular proton transfer (ESIPT) involving fluorescence mechanism, along with their inter/intramolecular interactions in crystals, are elucidated to depict the key factors for tunable emissions and high emitting efficiency. Furthermore, high-quality white-light-emitting materials are obtained in various solvents and polydimethylsiloxane (PDMS) films with combined fluorophores. Overall, these studies report a promising strategy for the construction of organic solid materials with color-tunable emission and shed light on methods for obtaining desirable emission efficiency. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c16585 |