Cereblon Modulators Target ZBTB16 and Its Oncogenic Fusion Partners for Degradation via Distinct Structural Degrons

There is a growing interest in using targeted protein degradation as a therapeutic modality in view of its potential to expand the druggable proteome. One avenue to using this modality is via molecular glue based Cereblon E3 Ligase Modulating Drug compounds. Here, we report the identification of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2020-12, Vol.15 (12), p.3149-3158
Hauptverfasser: Matyskiela, Mary E, Zhu, Jinyi, Baughman, Joshua M, Clayton, Thomas, Slade, Michelle, Wong, Hon Kit, Danga, Kristina, Zheng, Xinde, Labow, Mark, LeBrun, Laurie, Lu, Gang, Chamberlain, Philip P, Thompson, Joel W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a growing interest in using targeted protein degradation as a therapeutic modality in view of its potential to expand the druggable proteome. One avenue to using this modality is via molecular glue based Cereblon E3 Ligase Modulating Drug compounds. Here, we report the identification of the transcription factor ZBTB16 as a Cereblon neosubstrate. We also report two new Cereblon modulators, CC-3060 and CC-647, that promote ZBTB16 degradation. Unexpectedly, CC-3060 and CC-647 target ZBTB16 for degradation by primarily engaging distinct structural degrons on different zinc finger domains. The reciprocal fusion proteins, ZBTB16-RARα and RARα-ZBTB16, which cause a rare acute promyelocytic leukemia, contain these same structural degrons and can be targeted for proteasomal degradation with Cereblon modulator treatment. Thus, a targeted protein degradation approach via Cereblon modulators may represent a novel therapeutic strategy in acute promyelocytic leukemia where ZBTB16/RARA rearrangements are critical disease drivers.
ISSN:1554-8929
1554-8937
DOI:10.1021/acschembio.0c00674