Discrimination of botanical origin of olive oil from selected Greek cultivars by SPME‐GC‐MS and ATR‐FTIR spectroscopy combined with chemometrics

BACKGROUND Consumers today wish to know the botanical origin of the olive oil they purchase. The objective of the present study was the development of robust chemometric models based on gas chromatography–mass spectrometry (GC‐MS) and attenuated total reflectance–Fourier transform infrared spectrosc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2021-05, Vol.101 (7), p.2994-3002
Hauptverfasser: Revelou, Panagiota‐Kyriaki, Pappa, Charis, Kakouri, Eleni, Kanakis, Charalabos D, Papadopoulos, George K, Pappas, Christos S, Tarantilis, Petros A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND Consumers today wish to know the botanical origin of the olive oil they purchase. The objective of the present study was the development of robust chemometric models based on gas chromatography–mass spectrometry (GC‐MS) and attenuated total reflectance–Fourier transform infrared spectroscopy (ATR‐FTIR) for the purpose of botanical differentiation of three commercial Greek olive oil cultivars. RESULTS Using the solid‐phase microextraction technique (SPME), volatile compounds (VC) were obtained and analyzed by GC‐MS. Five hydrocarbons and one ester were selected by the forward stepwise algorithm, which best discriminated the olive oil samples. From ATR‐FTIR analysis, the spectral regions chosen from the forward stepwise algorithm were associated with CO stretching vibration of the esters of triglycerides and the CH bending vibrations of the CH2 aliphatic group and double bonds. Application of the supervised methods of linear and quadratic discriminant cross‐validation analysis, based on VC data, provided a correct classification score of 97.4% and 100.0%, respectively. Corresponding statistical analyses were used in the mid‐infrared spectra, by which 96.1% of samples were discriminated correctly. CONCLUSION ATR‐FTIR and SPME‐GC‐MS techniques in conjunction with the appropriate feature selection algorithm and classification methods proved to be powerful tools for the authentication of Greek olive oil. The proposed methodology could be used in an industrial setting for determination of the botanical origin of Greek olive oil. © 2020 Society of Chemical Industry
ISSN:0022-5142
1097-0010
DOI:10.1002/jsfa.10932