Green Tea Extract Decreases Arg-Derived Advanced Glycation Endproducts but Not Lys-Derived AGEs in UHT Milk during 1‑Year Storage

Epigallocatechin gallate (EGCG)-enriched green tea extract (GTE) was added to lactose-reduced UHT-treated milk to evaluate its role in perturbing the Maillard reaction and the formation of advanced glycation endproducts (AGEs) during 1-year storage. The UHT processing caused epimerization of EGCG in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2020-12, Vol.68 (48), p.14261-14273
Hauptverfasser: Poojary, Mahesha M, Zhang, Wei, Olesen, Sarah Bisgaard, Rauh, Valentin, Lund, Marianne N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epigallocatechin gallate (EGCG)-enriched green tea extract (GTE) was added to lactose-reduced UHT-treated milk to evaluate its role in perturbing the Maillard reaction and the formation of advanced glycation endproducts (AGEs) during 1-year storage. The UHT processing caused epimerization of EGCG into gallocatechin gallate (GCG). For milk samples with added 0.1% w/v GTE, a EGCG/GCG loss of 26% was found soon after the UHT treatment and the loss increased to 64% after the 1-year of storage. LC–MS/MS analysis revealed the presence of various EGCG/GCG-α-dicarbonyl adducts and EGCG/GCG-hydroxymethylfurfural adducts in milk samples, while EGCG/GCG-amino acid adducts were not detected. Although EGCG/GCG trapped α-dicarbonyl compounds including glyoxal, methylglyoxal, 3-deoxyglucosone/3-deoxygalactosone, and diacetyl, it did not lower their net steady-state concentrations, except of 3-deoxyglucosone. The addition of GTE reduced the formation of Arg-derived AGEs by 2- to 3-fold, but surprisingly enhanced the accumulation of furosine and lysine-derived AGEs [Nε-(carboxymethyl)­lysine and Nε-(carboxyethyl)­lysine)] by 2–4-fold depending on the concentration of the added GTE and storage time. The present study shows that trapping of α-dicarbonyl compounds by EGCG may not be the major pathway for inhibiting the formation of AGEs in milk.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.0c05995