Disruption of EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice

Summary Lesion‐mimic mutants (LMMs) provide a valuable tool to reveal the molecular mechanisms determining programmed cell death (PCD) in plants. Despite intensive research, the mechanisms behind PCD and the formation of lesions in various LMMs still remain to be elucidated. Here, we identified a ri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2021-02, Vol.105 (4), p.942-956
Hauptverfasser: Cui, Yuanjiang, Peng, Youlin, Zhang, Qiang, Xia, Saisai, Ruan, Banpu, Xu, Qiankun, Yu, Xiaoqi, Zhou, Tingting, Liu, He, Zeng, Dali, Zhang, Guangheng, Gao, Zhenyu, Hu, Jiang, Zhu, Li, Shen, Lan, Guo, Longbiao, Qian, Qian, Ren, Deyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Lesion‐mimic mutants (LMMs) provide a valuable tool to reveal the molecular mechanisms determining programmed cell death (PCD) in plants. Despite intensive research, the mechanisms behind PCD and the formation of lesions in various LMMs still remain to be elucidated. Here, we identified a rice (Oryza sativa) LMM, early lesion leaf 1 (ell1), cloned the causal gene by map‐based cloning, and verified this by complementation. ELL1 encodes a cytochrome P450 monooxygenase, and the ELL1 protein was located in the endoplasmic reticulum. The ell1 mutant exhibited decreased chlorophyll contents, serious chloroplast degradation, upregulated expression of chloroplast degradation‐related genes, and attenuated photosynthetic protein activity, indicating that ELL1 is involved in chloroplast development. RNA sequencing analysis showed that genes related to oxygen binding were differentially expressed in ell1 and wild‐type plants; histochemistry and paraffin sectioning results indicated that hydrogen peroxide (H2O2) and callose accumulated in the ell1 leaves, and the cell structure around the lesions was severely damaged, which indicated that reactive oxygen species (ROS) accumulated and cell death occurred in the mutant. TUNEL staining and comet experiments revealed that severe DNA degradation and abnormal PCD occurred in the ell1 mutants, which implied that excessive ROS accumulation may induce DNA damage and ROS‐mediated cell death in the mutant. Additionally, lesion initiation in the ell1 mutant was light dependent and temperature sensitive. Our findings revealed that ELL1 affects chloroplast development or function, and that loss of ELL1 function induces ROS accumulation and lesion formation in rice. Significance Statement ELL1 affects chloroplast development or function, and loss of ELL1 function induces ROS accumulation and lesion formation in rice.
ISSN:0960-7412
1365-313X
DOI:10.1111/tpj.15079