Generation of new hybrids by crossbreeding between bottom-fermenting yeast strains

The genetic diversity of bottom-fermenting yeast classified as Saccharomyces pastorianus is poor because strains are restricted to a few genetically distinct groups. Crossbreeding is an effective approach to construct novel yeast strains, but it is difficult because of inefficiency to obtain mating-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bioscience and bioengineering 2021-01, Vol.131 (1), p.61-67
Hauptverfasser: Ota, Taku, Kanai, Keiko, Nishimura, Hisami, Yoshida, Satoshi, Yoshimoto, Hiroyuki, Inadome, Hironori, Kobayashi, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The genetic diversity of bottom-fermenting yeast classified as Saccharomyces pastorianus is poor because strains are restricted to a few genetically distinct groups. Crossbreeding is an effective approach to construct novel yeast strains, but it is difficult because of inefficiency to obtain mating-competent cells (MCCs) of bottom-fermenting yeast. By using mating pheromone-supersensitive mutants, we previously isolated several mating-competent meiotic segregants from two bottom-fermenting yeast strains: high isoamyl acetate-producing KY1247, and low diacetyl-producing KY2645. Here, we constructed novel non-GM hybrids carrying preferable characteristics from both parents by crossbreeding these bottom-fermenting strains for the first time. Sixteen a/a-type meiotic segregants from KY2645 and 12 α/α-type meiotic segregants from KY1247 were mixed, and cells resembling zygotes were isolated via micromanipulation. In total, 149 hybrids were obtained and verified by examining known single-nucleotide polymorphisms (SNPs) between the parental strains. A sporulation test showed that some of the hybrids were able to sporulate. Moreover, fermentation tests on a test-tube and pilot-plant scale identified two hybrids with production levels of isoamyl acetate and diacetyl that were almost the same as KY1247 and KY2645, respectively. Both of these hybrids produced satisfactory beer in terms of taste, flavor, and overall quality, comparable to that produced by the parental strains. Collectively, our results suggest that crossbreeding between bottom-fermenting yeast strains has the potential to increase the diversity of yeast strains available for brewing, and our method of isolating MCCs provides a huge advance for crossbreeding of bottom-fermenting yeast without using DNA recombination techniques.
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2020.08.009