Synergistic effects of gelatin and nanotopographical patterns on biomedical PCL patches for enhanced mechanical and adhesion properties
Biomedical patches have been known as important biomaterial-based medical devices for the clinical treatment of tissue and organ diseases. Inspired by the extracellular matrix-like aligned nanotopographical pattern as well as the unique physical and biocompatible properties of gelatin, we developed...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2021-02, Vol.114, p.104167-104167, Article 104167 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biomedical patches have been known as important biomaterial-based medical devices for the clinical treatment of tissue and organ diseases. Inspired by the extracellular matrix-like aligned nanotopographical pattern as well as the unique physical and biocompatible properties of gelatin, we developed strength-enhanced biomedical patches by coating gelatin onto the nanopatterned surface of polycaprolactone (PCL). The relative contributions of the nanotopographical pattern (physical factor) and gelatin coating (chemical factor) in enhancing the mechanical and adhesive properties of PCL were quantitatively investigated. The nanotopographical pattern increased the surface area of PCL, allowing more gelatin to be coated on its surface. The biomedical patch made from gelatin-coated nanopatterned PCL showed strong mechanical and adhesive properties (tensile strength: ~14.5 MPa; Young's modulus: ~60.2 MPa; and normal and shear adhesive forces: ~1.81 N/cm2 and ~352.3 kPa) as well as good biocompatibility. Although the nanotopographical pattern or gelatin coating alone could enhance these physical properties of PCL in both dry and wet environmental conditions, both factors in combination further strengthened the properties, indicating the importance of synergistic cues in driving the mechanical behavior of biomedical materials. This strength-enhanced biomedical patch will be especially useful for the treatment of tissues such as cartilage, tendon, and bone. |
---|---|
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2020.104167 |